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Abstract. Life Cycle Sustainability Analysis (LCSA) studies the com-
plex processes describing product life cycles and their impact on the
environment, economy, and society. Effective and transparent sustain-
ability assessment requires access to data from a variety of heterogeneous
sources across countries, scientific and economic sectors, and institutions.
Moreover, given their important role for governments and policymakers,
the results of many different steps of this analysis should be made freely
available, alongside the information about how they have been computed
in order to ensure accountability. In this paper, we describe how Seman-
tic Web technologies in general and PROV-O in particular, are used to
enable transparent sharing and integration of datasets for LCSA. We
describe the challenges we encountered in helping a community of do-
main experts with no prior expertise in Semantic Web technologies to
fully overcome the limitations of their current practice in integrating
and sharing open data. This resulted in the first nucleus of an open
data repository of information about global production. Furthermore,
we describe how we enable domain experts to track the provenance of
particular pieces of information that are crucial in higher-level analysis.
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1 Introduction

Sustainability is increasingly becoming a key aspect both for policy making and
commercial positioning. Its importance is expected to increase with the global
socioeconomic impacts of climate change [11,15]. Life Cycle Sustainability Anal-
ysis (LCSA) studies the impacts of products along their life cycle, from the
extraction of raw materials to their production, and till their disposal [3]. This
enables enterprises and organizations to assess the impact of their current pro-
duction chain and to find more sustainable means of production, also in line
with the goal of sustainable development [15]. Despite this crucial role, large



variations in assumptions and origins of data embedded in the assessments hin-
der the reliability of the outcome of such analyses. Given the complex nature of
the production chain of any product, to perform reliable LCSA, analysts need
access to data from a variety of heterogeneous sources across countries, scien-
tific and economic sectors, and institutions. To enable the integration of diverse
data sources, previous efforts [6] designed an ontology and corresponding open
database to allow multiple organizations and researchers to share LCSA data
and to make use of such data to produce analysis and models. These efforts lay
the foundations of a platform where domain experts can both freely access data
to compute and produce new models, but also re-share their results within the
same framework. LCSA involves heterogeneous data-sources and actors, hence,
it is important to assure transparency, verifiability, and reproducibility of the
contents of any data involved in the process. This is achieved by tracking the
provenance of the information employed. Information about provenance (also
called lineage [16]) allows scientists to track their data through all transforma-
tions, analyses, and interpretations [1]. In this work, we share our experience
of opening up datasets from non-open formats. This will both help any party
interested in accessing and sharing LCSA data, as well as provide useful insights
to any organization willing to publish their own data to foster open science.

Contributions: This work presents an account of how Semantic Web (SW)
technologies are “in use” in an Open Source Database for Product Life Cycle
Sustainability Analysis, in direct collaboration with domain experts and associa-
tions involved in open sustainability assessment (http://bonsai.uno). We first
provide an introduction to the domain of Life Cycle Sustainability Analysis and
its links with Semantic Web technologies (Section 2). We then describe how the
BONSAI Open Database for Product Footprinting is tackling the problem of
integrating heterogenous LCSA data within a single open knowledge base (Sec-
tion 3). Further, we detail how we represent, keep track of, and allow querying
for the provenance of each piece of information in our open data repository. In
particular, we describe the data integration workflow and how this is supported
by the current open LCSA ontology (Section 4). We then detail how the BONSAI
Open Database allows modeling all the core data required to develop economic
input-output models used in LCSA (Section 5). The workflow we implemented
allows for integrating datasets from different sources and to republish them as
Linked Open Data. Further, we explain how these datasets, once converted, are
annotated with provenance information adopting the PROV-O [22] vocabulary,
allowing to verify the lineage of the source data (Section 6). Finally, we present
some important lessons learned while overcoming the challenges of employing
SW technologies in this domain (Section 7).

2 Background and Domain

Data used to perform LCSA originates from multiple sources such as national
statistics, environmental reports, and supply chain reports [20]. In addition, to
diversity in data sources, the data models also differ. For example, data on the
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production of goods or services can be reported in mass or monetary units.
Therefore, to perform LCSA, domain experts need to integrate data sets from
heterogeneous sources. Usually, LCSA relies on large databases (e.g., Ecoinvent3)
that contain data at different levels of granularity about many human activities.
Practitioners use these databases to compute specific models of the systems and
processes they study. Yet, many of these databases provide little to no access to
the techniques used to collect and integrate the data. Moreover, in many cases,
these databases are proprietary, expensive to access, and lack inter-operability.
Therefore, given the crucial role of LCSA, the BONSAI organization set out
to overcome the current lack of accessibility and transparency with an Open
Database for LCSA and developed, as a first step, an appropriate ontology [6].
Here, we present how SW technologies have been adopted for the first time in
LCSA to implement and materialize this open database.

Availability and accessibility of up-to-date data, as well as legal and technical
openness, are important elements that make Open Data the de-facto solution
both in open science and in a more transparent government. In this spirit, other
efforts have been taken in the direction of creating a database for LCSA analysis.
The most notable are Exiobase, YSTAFDB, and Trase Earth. Exiobase [10] is a
multi-regional Input-Output database that contains data on 200 product types
that are transacted between 164 industries. Moreover, it contains records for 39
resource types, 5 land types, and 66 emission types related to the production and
consumption of goods and services in the entire global economy. The Yale Stocks
and Flows Database (YSTAFDB) combines material stocks and flows (STAF)
data generated since early 2000 and collected by researchers at Yale [12]. Trase
Earth4 is another LCSA initiative that maps supply chain information system
for land and forest use in Latin America

Yet, while legal openness can be provided by applying an appropriate open
license, technical openness requires us to ensure that there are no technical
barriers to using the data. In particular, the aforementioned databases do not
make use of Semantic Web technologies, which limits their ability to seamlessly
integrate with other new datasets accessible on the Web. On the other hand, the
success of many open-data resources in other domains such as GeoNames and
Bio2RDF [13], motivates the decision to adopt Semantic Web technologies and
the Linked Open Data format as a more appropriate solution. Thus, while other
efforts provided (legally) open datasets for product footprinting, this work is the
first open database for LCSA on the Semantic Web.

Nonetheless, while a common ontology and data format is the first step to-
wards integrating and publishing free and open data for LCSA [6], in this paper
we focus on the next crucial step: integrating and sharing different Life Cycle
Sustainability datasets. Among others, we describe how we need not only to
achieve full interoperability between different datasets, but also how we record
and track the data lifecycle through provenance to ensure transparency, verifia-
bility, and traceability of the original datasets and the computed results. To this
end, we make use of the W3C PROV-O standard for modeling of provenance [22].

3 https://www.ecoinvent.org/ 4 https://trase.earth/
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The standard has been widely used in different systems and contexts in the last
couple of years. In general, the PROV-O vocabulary is highly flexible and en-
ables the recording of lineage for any collection of data, recording activities (e.g.,
who gathered what, where, and when), which can be used to evaluate, among
others, the reliability of the data. For instance, the W3C PROV-O standard has
been used to expose provenance information regarding version control systems
(VCS) [4], to enable the publication of VCS provenance on the Web and subse-
quent integration with other systems that make use of PROV-O. Moreover, it
has been used for a Semantic Web-based representation of provenance concern-
ing volunteered geographic information (VGI) [2] and to enhance the quality of
an RDF Cube regarding European air quality [5].

3 Life Cycle Sustainability Data

Supply and Use Tables (SUTs) are one of the primary data sources for LCSA.
They are comprehensive, non-proprietary data sources, covering the environmen-
tal, social, and economic spheres. In practice, the SUT records show what was
the total production from a specific industrial sector and which other industrial
sectors or markets consumed this product in which proportion. For instance,
SUT records show that in 2011, ∼1237 megatonnes of steel were produced in
China [10]. Furthermore, ∼ 92.7% of the domestic steel production in China was
also used in China. Hence, a national SUT database encapsulates production and
consumption of products and services for the entire national economy. Global
Multi Regional (MR) SUTs are a combination of national SUTs and provide
data on the global economy, which includes the transaction of goods and ser-
vices between countries [10]. Among others, to measure the economic impacts of
a change in demand of a specific product or service, Input-Output (IO) models
are constructed from SUTs by applying one of the multiple algorithms existing
in the literature [7]. IO models represent inter-industry relationships within an
economy, showing how output from one industrial sector becomes an input to
another industrial sector. As a result, an IO model, obtained from a set of MR
SUTs, links flows of productions within and among national markets. If the SUTs
include additional data on environmental emissions or social performance (e.g.,
employment levels), the IO models can be further used to perform environmen-
tal or social footprinting (e.g., the impact on carbon emissions by an increase in
demand of a product).

A Model for Interoperable LCSA Data. Data available in multi-regional
environmentally-extended IO models (EEIO) is aggregated for each industrial
sector. Granularity in the analysis can be increased by combining the EEIO with
detailed data of the product or service to be analyzed expanding it with differ-
ent sources [17]. However, what hinders this process is the lack of access to the
relevant datasets and their limited interoperability. To address this problem, we
developed an Ontology for Product Footprinting to ease and promote the ex-
change and integration of diverse LCSA data sources [6]. The proposed ontology
(Figure 1) follows a well-established model around three main concepts: Activity
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Fig. 1. The BONSAI ontology for LCSA [6]

(any production activity, e.g., steel production), Flow (a quantity of product that
is either produced or consumed by an activity, e.g., tonnes of steel produced in
China), and Flow Object (the kind of product that is produced or consumed,
e.g., Stainless steel) [21]. This ontology has been designed to model both eco-
nomic production and environmental emissions. While the ontology presents a
crucial first step for different stakeholders to agree on a common vocabulary and
data model, additional tasks are required for the realization of a common open
database. In the following, we describe such tasks. In particular, we have estab-
lished a data integration workflow where multiple data sources are integrated to
expand the granularity of the information and allow the construction of more
detailed EEIO models. In the following, we adopt the Exiobase dataset and the
YSTAFDB as prototypical example resources to demonstrate how we achieve
the desired interoperability. In particular, we describe how we enable integration
and sharing of multiple SUTs within the common BONSAI Open Database.

4 Data Integration Workflow

The integration workflow we established starts when a new dataset is identified
for inclusion and terminates with the output of RDF named graphs representing
the (annotated) information that was extracted from the identified dataset (see
Figure 2). The graphs are then published as Linked Open Data resources. We
note that we tackle explicitly the task of integrating datasets with different for-
mats within a unique repository with a common data model. That is, we enforce
(both manually and automatically) syntactic data quality, but we do not tackle
the issue of fixing data quality issues in the content of the data we integrate.
This is on purpose since our goal is to collect and store multiple datasets as they
are. Inspecting and solving data quality issues is an orthogonal task that domain
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experts can carry out only when they have open access to different datasets to
compare and cross-reference. This means that, without our open database, en-
suring the quality of the data used in LCSA would not be easy (or not feasible
at all). In Section 7, we provide an example of such a case.

Integration of Multiple Classifications. Different datasets might have dis-
tinct classifications for the same concept. To align those datasets, correspondence
tables systematically encode the semantic correspondence between those con-
cepts within the BONSAI classification. Correspondence tables, hence constitute
a reference taxonomy being developed by BONSAI to keep track of conceptual
linkage between various datasets. For example, the Exiobase dataset introduces
163 different instances of Activity Types, 200 Flow Objects, and 43 Locations. One
of the instances is the Activity Type of cultivation of paddy rice. In this case,
the new concept is added in the BONSAI classification (Figure 2, top dashed ar-
row) recording that cultivation of paddy rice is an Activity Type in the BONSAI
classification extracted from the Exiobase dataset.

Moreover, in Exiobase there is a special Flow Object labeled “Other emis-
sions”. Within the BONSAI classification, this concept is also linked to a set
of more specific emissions listed by the United States Environmental Protec-
tion Agency (US EPA). This correspondence is hence recorded via the partOf

relation to make data within the two classifications interoperable. Establishing
semantic equivalence requires some domain knowledge, hence correspondence
tables are manually created. Create Correspondence Table is the first process in
the data workflow (Figure 2). Then we perform the process of Correspondence
Mapping, which produces the new enhanced dataset containing the updated cor-
respondence information (in Figure 2 labeled Correspondence Mapped Dataset).

Intermediate Data Transformation. In the process of integrating new LCSA
datasets, we faced the technical issue of many LCSA datasets being shared in
various non-normative formats. As an example, the Exiobase dataset is shared
as a set of spreadsheets, without an associated ontology. Similarly, YSTAFDB
datasets are provided as plain CSV files. The data structure, even within the
same file format (e.g., CSV files), might however also differ from dataset to
dataset, due to lack of standardization between LCSA datasets [8]. To allow au-
tomatic transformation and integration of new datasets by a common set of data
converters, we defined a common intermediate CSV format. The Formalization
Transformation activity represents the conversion of the specific data-formats to
the common one (in Figure 2 with output Formalized Dataset). The formalized
datasets will contain a separate list of Flows, Flow Objects, Activity Types, and
Locations. Finally, this formalization task could also be carried out by any data
provider who wants to include their dataset in the BONSAI database.

RDF Data Extraction. The final step in the integration of a new dataset is
the actual conversion of the formalized data into an RDF graph coherent with
the BONSAI Ontology. Custom scripts are used in this process (called Data Ex-
traction) to create named graphs from the formalized data. The result is one or
more named graphs with instances of Flow Objects, Activity Types, Locations,
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and Flows (Named Graphs in Figure 2). Our convention is to create a named
graph for each class of instances. Thus, if a new dataset presents Locations, Flow
Objects, Activities, and Activity Types we create four new named graphs, one for
each of the four classes. Furthermore, this convention tries to avoid duplicating
concepts by storing them only once in their dedicated named graph. Since the
same information usually appears in several datasets, the other datasets, when
integrated, will just reference the information in the predefined named graph
avoiding redundancies. Finally, the newly generated graphs can be published via
a SPARQL endpoint. Moreover, while the BONSAI classification is expanded
since new named graphs are produced and integrated in the database, the in-
termediate resources (in the dashed ovals) can be discarded. Finally, since the
conversion script is automatic (due to the formalization step), we can ensure
its conformity to the proposed ontology and also identify missing information.
In our future work, we aim to also adopt shape expressions [14] for syntactic
validation of extracted information.

Integration of new Models. After a new dataset is integrated and published,
the database is used as a source of information to compute new or updated
IO models. Development of IO models from MR SUTs varies depending on
the algorithm used for IO Modeling [7, 18]. Nonetheless, users of the BONSAI
database can apply their own or predefined IO Modeling Algorithms to some or
part of the data published in the database by querying only the required data. For
instance, given that both Exiobase and YSTAFDB comply with the flow-activity
model encoded in the ontology [6], data from both can be processed altogether or
a user can select a portion of them for IO Modeling in a specific sector. This step
is illustrated in Figure 2 as the process IO Modeling using the named graphs in
the database along with an IO Modeling Algorithm. The result of this process is
a new named graph representing the Flows and the corresponding information
in the IO model. This means that the database allows also the insertion of the IO
models into the dataset (illustrated with a dashed line between the IO Models
and the Named Graphs).

Metadata Annotation. For all systems that incorporate data from multiple
diverse sources, keeping provenance information about individual pieces of data
is crucial. For new datasets this corresponds to the information of their origin,
especially the organization and the time at which they have been produced. For
IO models this also includes the portion of the dataset used to compute them
and the metadata about how they have been computed. Therefore, during the
integration processes described above, the output datasets are also annotated
with provenance information, as described in Section 5.

Handling updates. The pipeline is rerun whenever a new dataset is integrated,
or when a new version of an already integrated dataset is available. All steps of
the pipeline must be rerun for the integration of new datasets, but changes to
existing datasets often do not require the initial manual step of Create Correspon-
dence Table, since the schema between versions of a dataset is rarely changed.
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Fig. 2. Integration workflow of a new LCSA dataset. Squares represent processes, ovals
represent data, arrows indicate the flow of data, dashed ovals represent data which is
not saved after having been used in all their respective processes.

5 Support for Provenance
Provenance information is used to determine how an artifact was produced,
and from where it origins. This allows, among others, to verify whether correct
methods have been utilized to obtain a result and hence whether artifacts can be
trusted [22]. Thus, data in the BONSAI database is enhanced with provenance
information annotations for all resources integrated through time.

prov:wasGeneratedByprov:wasAttributedTo

bonsai:[instance-type]/[dataset]

prov:wasAttributedTo

bonsai:foaf/provider_[id]

prov:wasAttributedTo

prov:hadMember bonsai:prov/dataset_[id]

prov:hadMember

prov:wasAssociatedWith

bonsai:foaf/bonsai

prov:used

prov:hadPlan

bonsai:prov/dataExtractionActivity_[id]

type=prov:Collection
prov:generatedAtTime=xsd:date

...

prov:used

bonsai:ontology

type=prov:Entity
prov:hadMember

type=prov:Agent

bonsai:prov/extractionScript

bonsai:[instance-type]/[dataset]/[id]bonsai:[instance-type]/[dataset]/[id]

prov:hadMember

bonsai:prov/dataset_[id]

Fig. 3. Implementation of Provenance in the LCSA integration workflow. Pentagons,
ellipses, and squares describe PROV-O Agents, Entities, and Activities respectively.
Arrows represent PROV-O provenance relationships between model constituents.

In practice, the BONSAI provenance model is implemented by referencing
and subclassing concepts from the W3C PROV-O vocabulary [9]. PROV-O uses
the concepts of Agents, Entities, and Activities, to describe objects and their
life cycle. In PROV-O Entities can be physical, digital, or conceptual objects of
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bonsai:flowobject/exiobase_3_3_17 a prov:Collection ;

prov:generatedAtTime "2019-11-28"^^xsd: date ;

prov:wasGeneratedBy bonsai:prov/dataExtractionActivity_0 ;

prov:hadMember bonsai:flowobject/C_ADDC,

bonsai:flowobject/C_STEL,

bonsai:flowobject/C_ALUM,

...

Fig. 4. Fragment of provenance record for the named graph for Exiobase
v3.3.17 Flow Objects. Prefixes: bonsai: for BONSAI common resources
(https://rdf.bonsai.uno/), and prov: for PROV-O (http://www.w3.org/ns/prov#)

which we want to keep track. Activities are records of how entities come into
existence and how existing Entities are changed to become new Entities. Agents
can be a person, a piece of software, an organization, or other entities that
may be ascribed responsibility [22]. Hence, PROV-O defines concepts to relate
Agents, Entities, and Activities used in the production, delivery, or in other ways
influencing an object [22]. Provenance information is automatically produced
during the Data Extraction process in the data integration workflow described
in Section 4, following the specific implementation as illustrated in Figure 3. In
the following, we explain how this is materialized using the integration of the
Exiobase dataset as an example. At the time of writing, we have also integrated
the YSTAFDB [12].

The integration of a new dataset results in the creation of one or
more named graphs defining instances of Flow Objects, Activity Types, Lo-
cations, and Flows. Each named graph is assigned a unique URI (e.g.,
bonsai:flowobject/exiobase 3 3 17, for the named graph defining the Flow
Objects extracted from Exiobase v3.3.17) and it is defined both as a distinct
Entity and as a Collection. Also, a distinct URI is assigned to every instance
(e.g., each instance of Flow Object, Flow, or Activity Type) in each dataset (e.g.,
Exiobase). For instance, in Exiobase (v3.3.17) the Flow Object describing Ba-
sic iron and steel of ferro-alloys and first products thereof (code C STEL) has
URI bonsai:flowobject/exiobase 3 3 17/C STEL. Finally, the Data Extrac-
tion process encodes provenance information for the named graphs, linking each
graph to both its data source and the version of the script used for data ex-
traction. Moreover, it lists all the instances in the graph as members of the
corresponding collection. That is, we record membership to a specific collection
for each resource within each graph (lowest level of Figure 3). In practice, the
PROV-O relation prov:hadMember is used to relate instances of data to the same
prov:collection. This explicit link is materialized to improve accessibility to
users and automatic analysis tools. The result of this model is an annotated
resource associated with provenance information about the creation time of the
named graph, which activity was used in its generation, and the list of its mem-
bers. A fragment of a concrete example of such a record is shown in Figure 4
(non-provenance metadata has been omitted from the figure for clarity).

As explained above, named graphs are created during the process Data Ex-
traction. Since data extraction is a crucial activity for the creation of the named
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bonsai:prov/dataExtractionActivity_0 a prov:Activity ;

prov:hadPlan bonsai:prov/extractionScript ;

prov:wasAssociatedWith bonsai:foaf/bonsai ;

prov:used <http://ontology.bonsai.uno/core>,

bonsai:prov/dataset_0 .

Fig. 5. Provenance record of a data extraction activity referring to the BONSAI on-
tology (ontology.bonsai.uno/core), Exiobase v3.3.17 (bonsai:prov/dataset 0), and
the extraction script identified by bonsai:prov/extractionScript.

graphs, we encode information about this step using a PROV-O Activity. The
Activity encodes information about what entities were used in the creation of
the named graphs, which was associated with the activity, and references the
actual implementation (e.g., the script used for data extraction). Each activity
is assigned a unique URI (e.g., bonsai:prov/dataExtractionActivity [id]).
Hence, this record links the usage of a set of resources, along with a plan of
execution, to a specific data extraction activity. A concrete example of such a
record is illustrated in Figure 5. The record shows how the BONSAI ontology
and a dataset were used in the activity referred to as dataExtractionActivity,
along with the plan extractionScript, linking to the version of the script
used in the PROV-O Activity. As illustrated in Figure 4, the PROV-O rela-
tion prov:wasGeneratedBy is used to relate the content of a named graph, to
an extraction activity. Hence, we maintain a consistent link between individual
instances of extracted data and their respective origin datasets.

Finally, we record the specific data extraction activity (e.g.,
bonsai:prov/dataExtractionActivity 0) that extracted data from the
specific dataset (e.g., bonsai:prov/dataset 0). Hence, each dataset integrated
into the BONSAI database is given a unique URI (e.g., bonsai:prov/dataset 0,
for the Exiobase dataset v3.3.17). Furthermore, the dataset provider (e.g., an
organization, a government, or an individual) is also given a unique URI (e.g.,
bonsai:foaf/provider 0, for the Exiobase Consortium maintaining Exiobase).
For instance, the provenance record for Exiobase dataset v3.3.17 is illustrated
using the turtle format in Figure 6. The record contains metadata about the
dataset (e.g., the version 3.3.17), a link to the organization responsible for it
(e.g., Exiobase Consortium), and a date for the latest dataset update before
integration into the BONSAI database (e.g., 2019-03-12).

bonsai:prov/dataset_0 a prov:Entity ;

dc:title "Exiobase"

rdfs:label "LCSA dataset by the EXIOBASE-Consortium, version 3_3_17";

dc:date "2019-03-12"^^xsd:date;

dc:license <https://www.exiobase.eu/index.php/terms-of-use> ;

dc:rights "Copyright c©2015 - EXIOBASE Consortium" ;

owl:versionInfo "3.3.17" ;

prov:wasAttributedTo bonsai:foaf/provider_0.

Fig. 6. Provenance record of the Exiobase dataset v3.3.17. The PROV-O Entity records
the specific version of Exiobase (i.e., v3.3.17), and the attribution to the EXIOBASE
Consortium using the W3 PROV-O predicate prov:wasAttributedTo.
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6 BONSAI Database In-Use

Currently, we have published linked open data obtained from the integration
of the Exiobase and YSTAFDB datasets. This includes 15.3M and 49K flows,
164 and 9 flow objects, 49 and 1686 activities, and 200 and 525 locations for
Exiobase and YSTAFDB, respectively. In the following, we shortly describe how
the BONSAI database can be used in practice for the calculation of environmen-
tal emissions. We also describe how the availability of provenance annotations
allows us to inspect and assess the reliability of the provided information.

Example Use Case. A typical use of LCSA is the calculation of environmental
emissions for industries and products of interest. For example, to estimate the
environmental emissions related to production and consumption of steel prod-
ucts in China. In the following, we show which information we have access to
by querying the BONSAI database. The queries are executed on the BONSAI
SPARQL endpoint5. From Exiobase we obtain that ∼1237 megatonnes of steel
were produced in China in the year 2011. Then we inspect how that steel was
used and by whom: China uses approximately 92.7% of its domestic steel pro-
duction. The database currently records that out of the whole of China’s steel
production ∼617 megatonnes (∼50%) were consumed by manufacturers of steel
products, ∼127 megatonnes (∼10% of production) were consumed by manufac-
turers of electrical machinery, and ∼168 megatonnes (∼14% of production) were
consumed by manufacturers of fabricated metal products. The database also
contains information about environmental emissions, such as carbon dioxide,
particulate matter (PM 2.5, PM 10), and other such emissions. The database
shows that the Chinese steel production contributes to ∼1617 megatonnes of car-
bon dioxide and ∼1.77 megatonnes of particulate matter. Similar to the above
example, data on many other products of major industrial and agricultural sector
can be extracted from Exiobase for the year 2011. Instead, YSTAFDB provides
data on a smaller set of 62 elements and various engineering materials, e.g., steel,
but on more granular spatial scales and timeframes, ranging from cities to global
and from the 1800s to 2013. Therefore, the combined information from the two
datasets can be used to make more qualified environmental decisions regard-
ing the environmental performance of steel production, such as comparing the
emissions from Chinese steel production to the national environmental emission
quotas. Similarly, it can compare the impacts of Chinese steel production to
other countries.

Provenance. In the above example, we found that China produced ∼1926
tonnes of steel in 2011. One typical question is to verify whether the most current
version of the data is available as well as what is the source of such a datapoint.
To address this, we query the provenance of our data to find the origin of the
information on which we calculated the Chinese steel production. The first query
finds the named graphs with Flows used in the calculation of the Chinese pro-
duction of steel. The query is illustrated in Figure 7. It finds all Flows which
are the output of an Activity, where the Activity has an Activity Type labeled

5 Available at http://odas.aau.dk
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SELECT DISTINCT ?collection

FROM ...

WHERE {

?flows a bont:Flow .

?flows bont:outputOf ?activity .

?activity bont:activityType / rdfs:label "Manufacture of steel...".

?activity bont:location / rdfs:label "CN".

?collection prov:hadMember ?flows }

Fig. 7. Query fragment (reduced for space constraints) for finding the collections (e.g.,
named graphs) where flows regarding Chinese steel production origin from.

bonsai:data/exiobase3_3_17/hsup a prov:Collection ;

prov:generatedAtTime "2019-12-02"^^xsd: date ;

prov:wasAttributedTo bonsai:foaf/bonsai ;

prov:wasGeneratedBy bonsai:prov/dataExtractionActivity_0 ;

prov:hadMember bonsai:data/exiobase3_3_17/hsup/f_9109,

bonsai:data/exiobase3_3_17/hsup/f_9096,

...

Fig. 8. Record for the collection bonsai:data/exiobase 3 3 17/hsup. It encodes
provenance metadata for Flows, Activities and Locations extracted from the dataset
exiobase 3 3 17. Non-provenance metadata has been omitted from the figure.

as Manufcature of basic iron and steel, and the Activity was performed in China
(Location). To identify the origin of this information, it finds all named graphs to
which such Flows belong. In our example, we find that all extracted Flows of the
product Iron used in the calculation of the Chinese production origin from the
named graph bonsai:data/exiobase 3 3 17/hsup. The SPARQL DESCRIBE
query can now be used to describe the resources, which for this example results
in the record illustrated in Figure 8.

As illustrated in the figure, the provenance relation prov:wasGeneratedBy

shows that the graph was generated by a data extraction activity identified
by bonsai:prov/dataExtractionActivity 0. We further query the provenance
of the database to investigate this data extraction activity (also in Figure 5).
The record has a provenance relation prov:used to the dataset located at
bonsai:prov/dataset 0, which means that this dataset was used in the activ-
ity to create the named graph located at bonsai:data/exiobase 3 3 17/hsup.
Hence, when provenance of the dataset is queried (illustrated in Figure 6),
we find the PROV-O relation prov:wasAttributedTo, which is an attri-
bution from the dataset Entity to the Agent responsible for its delivery.
Hence, we query the database again to find information about the Agent
with URI bonsai:foaf/provider 0, as referred to in the relation. The re-
sulting record is illustrated in Figure 9. This allows us to reach directly the
source of the dataset and its publisher to verify the currently available infor-
mation. Moreover, the provenance information about the extraction activity
also has a prov:hadPlan relation to an extraction script entity identified with
bonsai:prov/extractionScript (see Figure 5). This entity points to a specific
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bonsai:foaf/provider_0 a prov:Agent, org:Organization ;

dc:description "Consortium creating datasets for LCSA" ;

dc:title "Exiobase Consortium" ;

foaf:homepage <https://www.exiobase.eu/> .

Fig. 9. Provenance record for the PROV-O Agent bonsai:foaf/provider 0. The
record contains information about the Exiobase Consortium.
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Fig. 10. Comparison of query time and disk footprint. The label under each column,
corresponds to queries related to the competency questions [6].

version of a GitHub repository containing the version of code used for the extrac-
tion of Flows, Activity Types, Flow Objects, and Locations. Hence, provenance
for the data extraction script is also maintained.

Triplestore performance. To publish the data we collected through an open
SPARQL endpoint, we first deployed Jena as our triple store. Yet, during initial
tests with different amounts of data, we quickly witnessed that uploading all
our triples (∼15M) proved unfeasible. In particular, as we tried to store more
data, the disk space required by Jena was increasing faster than expected. Fur-
thermore, queries to address the competency questions [6] were requiring many
minutes to compute, even when processing only a subset of the data. Therefore,
we investigated alternative options in terms of triplestore performance for our
domain specific case of LCSA. In particular, we compared Jena and Open Vir-
tuoso using the LITMUS benchmark framework [19]. The benchmark was run
on a virtual server with 8 cores and 64GB of RAM. Our benchmark adopted the
SPARQL queries converted from the competency questions over a subset of our
full dataset. In our results (see Figure 10), Open Virtuoso greatly outperformed
Jena in all queries by an order of magnitude in running time. Moreover, Jena
storage files on disk had 3x larger space footprint than Virtuoso. Therefore, we
concluded that Open Virtuoso was the best choice for our needs and is now used
as the DBMS for our SPARQL endpoint.

7 Lessons Learned and Future Work

In this work we have presented how we employed Linked Open Data and Se-
mantic Web technologies for achieving the goal of integrating LCSA datasets.
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This allowed us to establish the first Linked Open Data database for product
footprinting5. The current implementation overcomes several limitations in pre-
vious similar efforts. In the following, we present a brief summary of both the
advantages and challenges that we encountered in this process.

Advantages of Semantic Web. We demonstrate the benefits of employing
Semantic Web technologies to support open and transparent LCS Analysis. To
achieve its full potential, LCSA requires the collaboration and sharing of infor-
mation at many different levels both from governments and organizations. Their
interoperability is of crucial importance for the effective computation of IO mod-
els. These models are required to investigate global and local impacts due to the
change in demand for products and services. In particular, the adoption of a
common ontology alongside established standards for data interoperability en-
ables not only researchers and practitioners to have open access to environmental
information, but also facilitates other providers to contribute to the database by
sharing their own data.

Moreover, we prove the advantages of Semantic Web technologies in the
domain of LCSA, by successfully integrating the two datasets: Exiobase and
YSTAFDB. These datasets are now fully interoperable and can be queried and
analyzed altogether. Further, we plan to exploit novel SW technologies by ex-
tending the pipeline with a data consistency checking process using SHACL
constraints. This represents a unique and unprecedented opportunity for the
future of LCSA.

Challenges. As the project grows, we expect new challenges in ensuring the
computational scalability of the extraction pipeline. Currently, without the man-
ual process for correspondence tables, the pipeline takes 8 hours to run, using
a virtual machine with 8 cores and 64GB RAM. Even though the complexity
of the pipeline only grows linearly with respect to the number of triples in the
accumulated datasets, runtime could become an issue when more and larger
datasets are integrated. We plan to cope with this problem using parallelization
techniques since the main processes in the pipeline are highly parallelizable.

Choice of triple store. As described in the previous section, the choice of
data-management system was crucial to allow the necessary scalability of our
database. While we first deployed Jena as our triple store, influenced by its pop-
ularity along with its open-source license, this choice revealed to be unfeasible.
Open Virtuoso instead revealed to be a more solid choice. This was an important
practical lesson for us.

User interface. The use of SW technologies allows open access to the data for
both humans and machines, thanks among others to the adoption of the RDF
standard and SPARQL query language. Yet, SPARQL is hard to use for non-
expert users. To bridge this gap we have deployed a simplified user interface by
adapting the yasGUI client5. Also, we enhanced the GUI with query templates
for easy access to common LCSA SPARQL queries. This interface presents a list
of query templates, among which are present the examples adopted in this work
and the competency questions defined with the domain experts. Despite the
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simplicity of the current GUI, it enabled LCSA experts to query the data in new
ways. This led to find a flaw in a fundamental data assumption they were relying
on in their handling of the data. Hence, Semantic Web technologies exploited
through our GUI, allowed us to open the data enough for this assumption to be
tested false by the domain experts and enabled the experts to design corrections
in the data processing step. In future, we plan to implement advanced GUIs and
as well as a Python library to be used within a data-science notebook to further
empower domain experts in their analysis.

Provenance. In this work, we describe the data integration workflow estab-
lished for the conversion of new datasets into interoperable Linked Open Data.
This data will be used to derive complex models, hence we also require to verify
the source of the data and the algorithms used in the calculation of the models.
Hence, we employed the PROV-O ontology to implement provenance modeling
of the entities, activities, and agents involved in the construction and updates
of the database. Enabling the tracking of provenance information was one of the
most important goals of this work and a key enabler for transparent and reli-
able LCSA. Nonetheless, while the PROV-O model is easy on the surface, the
flexibility of the model presented a non-obvious challenge when deciding how to
adapt its vocabulary to our domain. In particular, it is not straightforward to
decide the most convenient level of granularity at which to record provenance
information. Finally, it was challenging to determine whether a specific prove-
nance model meets all the necessary requirements. To this end, we designed a
set of basic provenance competency questions, which we plan to expand in the
future. The implementation of a model of provenance was done through multi-
ple iterations and cross-referenced with the competency questions. In its current
implementation, we focused on adopting the viewpoint of the domain experts,
who are used to handle datasets in terms of files and data-providers.
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