
Decentralized Indexing over a Network of RDF
Peers

Christian Aebeloe(�)[0000−0003−3186−1607], Gabriela
Montoya[0000−0001−5835−0335], and Katja Hose[0000−0001−7025−8099]

Aalborg University, Aalborg, Denmark
{caebel,gmontoya,khose}@cs.aau.dk

Abstract. Despite the prospect of a vast Web of interlinked data, the
Semantic Web today mostly fails to meet its potential. One of the main
problems it faces is rooted in its current architecture, which totally relies
on the availability of the servers providing access to the data. These
servers are subject to failures, which often results in situations where
some data is unavailable. Recent advances have proposed decentralized
peer-to-peer based architectures to alleviate this problem. However, for
query processing these approaches mostly rely on flooding, a standard
technique for peer-to-peer systems, which can easily result in very high
network traffic and hence cause high query response times. To still enable
efficient query processing in such networks, this paper proposes two
indexing schemes, which in a decentralized fashion aim at efficiently
finding nodes with relevant data for a given query: Locational Indexes
and Prefix-Partitioned Bloom Filters. Our experiments show that such
indexing schemes are able to considerably speed up query processing
times compared to existing approaches.

1 Introduction

While there is a huge potential of possible applications of Linked Data and
although more and more information is being published in RDF, it is currently
not possible to rely on the availability of these datasets. Data providers publish
their data as downloadable data dumps, queryable SPARQL endpoints or TPF
interfaces, or dereferenceable URIs.

As highlighted in several recent studies [1,3,10,22], it is a huge burden for data
providers to keep the data available at all times, making many endpoints often
unavailable. Multiple recent studies [1,4,8] therefore explored and evidenced the
importance of avoiding a single point of failure, e.g. a central server, and maintain
a decentralized architecture where data is available even if the original uploader
fails through data replication. These approaches, however, either introduce a
structured overlay over a peer-to-peer (P2P) network [4], use unstable nodes
with limited storage capabilities [8], or make use of inefficient query processing
algorithms, such as flooding [1]. Applying a structured overlay to a network
of peers restricts peer autonomy as some kind of global knowledge is used to
allocate the data at certain peers and to find relevant data for a given query.

Apart from general problems, such as finding an optimal way to allocate data
at peers, structured overlays need to adjust the overlay when new peers leave
or join the network, which may cause problems when a high number of nodes
leaves or joins.

Unstructured P2P networks, on the other hand, retain the maximum degree
of peer autonomy but with the lack of global knowledge about data placement
efficient query processing is considerably more challenging. Hence, unstructured
P2P systems typically rely on expensive algorithms, such as flooding, which
creates a large overhead and involves exchanging a high number of messages
between nodes until the relevant data is actually found and processed. Assuming
that each node in the network has N neighbors, flooding results in

∑ttl
i=1N

i

messages to reach all nodes within a hop distance of ttl (time-to-live value). For
example, given a network with N = 5 and ttl = 5, flooding results in 3,905
messages. Query processing in an unstructured architecture has been addressed
previously [8,9,16]. However, they either focus on reducing the load on servers by
splitting the query processing tasks between multiple clients or rely on unstable
nodes with limited storage capabilities. The lack of global knowledge impacts
the answer completeness as evidenced in [9], where the average completeness
remains under 45%.

In this paper, we do not aim to reduce the server loads or provide users
with low-cost but incomplete answers. Instead, to overcome the lack of global
knowledge in unstructured architectures and enable efficient query processing,
this paper proposes the use of novel indexes, inspired by routing indexes [6],
which are tailored for RDF datasets, and provide a node with information about
which data its neighbors can provide access to within a distance of several hops.
In summary, this paper makes the following contributions:

• Two indexing schemes to determine relevant data based on common subjects
and objects: (i) a baseline approach: Locational Index and (ii) an advanced
index based on bloom filters: Prefix-Partitioned Bloom Filters.
• Efficient query processing techniques for unstructured decentralized

networks using the proposed indexing schemes, and
• An extensive evaluation of the proposed techniques.

This paper is structured as follows: while Section 2 discusses related work,
Section 3 describes preliminaries and provides background information. Section 4
proposes the Locational Indexing scheme, followed by Prefix-Partitioned Bloom
Filters in Section 5. Query processing is described in Section 6. The results of
our experimental study are discussed in Section 7 and the paper concludes with
a summary and an outlook to future work in Section 8.

2 Related Work

Although decentralization is not an entirely novel concept, it has gained more
and more attention over the last couple of years, especially in the Semantic Web
community. The Solid platform [15], for instance, proposes to store personal

2

data in RDF format in a decentralized manner, in so-called Personal Online
Datastores (PODs). A POD can be stored on any server at any location, and
applications can ask for access to some of its data. This means that data is
scattered around the world and that, even if a server fails, most peoples’ PODs
will still be available. The current focus of Solid, however, is more on protection
of private data, whereas we focus on indexing schemes and query processing in
decentralized architectures.

To improve availability of data by reducing the load at the servers running
SPARQL endpoints, Triple Pattern Fragments (TPF) [22] have been proposed.
By processing only triple pattern requests at the servers, query processing
load can be reduced and shifted to the clients that then have to process
expensive operations, such as joins. Bindings-Restricted TPF (brTPF) [10]
further reduces the server load, by bulking bindings from previously evaluated
triple patterns, thereby reducing the amount of requests. Other approaches [9,16]
have similarly sought to divide the query processing load among multiple clients,
or multiple RDF interfaces [17], in order to speed up query processing. While
the previously mentioned approaches greatly reduce the server load, they still
have some limitations. Some of these approaches [10, 17, 22] rely on a single
server, or a fixed set of servers, that are vulnerable to attacks and represent
single points of failure; if the servers fail, all their data will become unavailable,
while other approaches [9, 16] rely on unstable nodes with limited storage
capabilities. Instead, we focus on architectures in which data is stored, and
possibly replicated, in a decentralized and more stable manner, and on reducing
the amount of messages sent within such an architecture.

Several decentralized architecures for RDF data are based on structured
overlays over a P2P network [4,13,14]. These overlays allow to easily identify the
nodes that have relevant data to evaluate queries. However, while they have been
shown to provide fast query processing, they are vulnerable to churn. This is the
case, since each time a node leaves or joins the network, the overlay has to be
adapted. This creates a frequent overhead, making such architectures inflexible
in unstable environments. Moreover, such structured overlays often impose the
placement of data within the network, which is not applicable to the scenario
considered in this paper. Therefore, such overlays are not applicable for source
selection in our case.

In unstructured networks where the placement of data to the nodes is not
imposed, several strategies have been proposed to access the data scattered
through the network. Accessing the data may rely on centralized indexes, where
one single node is responsible to maintain a full overview of the whole data
in the network, and distributed indexes, where nodes are only responsible to
provide an overview of the data they store. Centralized indexes represent a single
point of failure and it is a challenge to keep the information up-to-date. Diverse
approaches, such as [6, 7, 23], represent improvements over the basic flooding
algorithm, which distributes the requests to all the nodes in the network, by
reducing the number of contacted nodes to answer a query. For instance, routing
indexes [6] extend the information that each node includes in its distributed index

3

to include an entry for each of its neighbors and some aggregated information
about what data can be accessed by contacting that neighbor within a distance
of several hops, locally or by routing the query to a neighbor that has access to
such information.

Diverse RDF indexing approaches have been proposed in contexts such as
query optimization and source selection [5,18,21]. These approaches are mainly
based on the structure of the graphs, such as finding representative nodes within
the graph, common patterns in the data, or statistical information, such as
number of class instances. Our general approach can be combined with many
of these approaches, however for our concrete implementation we have focused
on summaries based statistical information, since they provide a good tradeoff
between index creation time and precision of the indexes. In our case, each node
computes its own statistical information, either a locational or PPBF index, and
exchanges this information with its neighbors.

3 Preliminaries

Today’s standard data format for semantic data is the Resource Description
Framework (RDF)1. RDF structures data into triples, which can be visualized
as edges in a knowledge graph.

Definition 1 (RDF Triple). Given the infinite and disjoint sets U (the set of
all URIs/IRIs), B (the set of all blank nodes), and L (the set of all literals), an
RDF triple is a triple of the form (s, p, o) ∈ (U ∪B)×U × (U ∪B ∪L) where s
is called the subject, p the predicate, and o the object.

An RDF graph g is a finite set of RDF triples. In order to query an RDF graph
containing a set of RDF triples, SPARQL2 is widely used. The building block
of a SPARQL query is a triple pattern. Triple patterns, like RDF triples, have
three elements: subject, predicate, and object, but unlike RDF triples any of
these elements could be a variable.

Definition 2 (Triple Pattern). Given the infinite and disjoint sets U , B,
and L from Definition 1, and V (the set of all variables), a triple pattern is a
straightforward extension of an RDF triple, i.e., a triple of the form (s, p, o) ∈
(U ∪B ∪ V)× (U ∪ V)× (U ∪B ∪ L ∪ V).

If there is a mapping from the variables in the triple pattern to elements in
U ∪B ∪ L, such that the resulting RDF triple is in an RDF graph, then we say
that the triple pattern matches those RDF triples, and that the triple pattern has
solutions within the RDF graph. Moreover, in a SPARQL query triple patterns
are organized into Basic Graph Patterns (BGPs). A BGP matches only if all the
triple patterns within the BGP match. Furthermore, BGP may be combined with
other SPARQL operators, such as OPTIONAL or UNION. Even if our approach

1 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
2 http://www.w3.org/TR/rdf-sparql-query/

4

http://www.w3.org/TR/2004/ REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-sparql-query/

works well for SPARQL queries with any SPARQL operators, we use examples
and descriptions with a single BGP as it makes the explanations simpler and
can be naturally extended to SPARQL queries with any number of BGPs.

In an unstructured P2P system, nodes function as both clients and servers. Each
node maintains a limited local datastore and a partial view over the network.
In the limited local datastore, the node may include one or more RDF graphs.
To ease the management of replicated graphs on several nodes, each graph is
identified by a URI g. Then, the set of graphs in the local repository of node
n is denoted as Gn. To keep the network structure stable and up-to-date, peers
periodically update their neighbors following certain protocols, such as [23]. The
specifics of the partial view over the network may vary from system to system.
For example, some systems [1, 7] rank neighbors based on various metrics, e.g.,
the issued queries or the degree to which the data can be joined.

In this paper, we provide a general approach to identify relevant RDF data
within a network. Our approach is based on indexing techniques that are defined
independently of specific data placement strategies or network infrastructure.
Therefore, our approach can be used in combination with different systems, in
particular unstructured P2P networks, which we provide specific details for in
Section 6. Furthermore, our general approach to identify relevant RDF data
may be used in combination with diverse RDF interfaces to efficiently process
queries.

4 Locational Index

Let P (g) be a function that returns the set of predicates within a graph g and
Gn be the set of graphs in the local repository of node n. n’s locational index
IiL(n) then summarizes the graphs that can be reached within a distance of i
hops.

Definition 3 (Locational Index). Let N be the set of nodes, P the set of
predicates, and G the set of graphs, a locational index is a tuple IiL(n)=〈γ, η〉,
with γ : P → 2G and η : G → 2N . γ(p) returns the set of graphs gs s.t. ∀g ∈
gs : p ∈ P (g). η(g) returns the set of nodes ns such that g ∈ Gni

such that ni is
within i hops from n.

More formally, given that a node n can be described as a triple n = 〈Gn, N, u〉,
with Gn being the set of graphs that n stores, N being the set of direct neighbors,
and u being a URI that identifies n, a locational index of depth 0 (covering only
local graphs) at node n is defined as I0L(n) = 〈γ, η〉, where:

γ(p) = {g | g ∈ Gn ∧ p ∈ P (g)} (1)

η(g) = {n},∀g ∈ Gn (2)

The locational index of depth i for a node n is defined as IiL(n) = 〈γ, η〉, where:

5

γ = I0L(n).γ ⊕
⊕

n′∈n.N
Ii−1L (n′).γ (3)

η = I0L(n).η ⊕
⊕

n′∈n.N
Ii−1L (n′).η (4)

With (f ⊕ g)(x) = f(x) ∪ g(x) if f and g are defined at x and f(x), g(x) are
sets, (f ⊕ g)(x) = f(x) if only f is defined at x, and (f ⊕ g)(x) = g(x) if only g
is defined at x.

Example 1 (Locational Index). Consider the graphs in Table 1a and the nodes
and connections in Figure 1b. Applying Equations 3-4 to create a locational
index of depth 2 for node n1 results in I2L(n1) as shown in Table 1c.

g1 g2 g3 g4

〈a p1 b〉 〈a p2 d〉 〈c p3 d〉 〈b p2 i〉
〈f p1 a〉 〈b p2 e〉 〈g p3 d〉 〈g p2 b〉
〈c p1 b〉 〈e p3 h〉 〈b p1 j〉

(a) Datasets and their triples

n1

g1, g2
n2

g2, g3

n3

g3, g4

(b) Connections between
nodes

p γ(p) g η(g)

p1 {g1, g4} g1 {n1}
p2 {g2, g4} g2 {n1, n2}
p3 {g3} g3 {n2, n3}

g4 {n3}
(c) I2L(n1)

Fig. 1: Locational index obtained from a set of datasets and connections

In a real system, locational indexes are built by flooding the network for a
specified amount of steps, where each reached node replies with its precomputed
locational index.

The nodes that are relevant to evaluate a triple pattern tp, with
predicate ptp, are given by

⋃
g∈γ(ptp) takeOne(η(g)), if ptp is a URI, or⋃

g∈range(γ) takeOne(η(g)), if ptp is a variable. takeOne(s) returns one element
in the set s and it allows for evaluating the triple pattern only once against each
graph. Thereby, flooding an entire network can be avoided by only sending triple
patterns to relevant nodes. Even in the case of triple patterns with a variable as
predicate, the number of requests can be significantly reduced, especially when
replicas of graphs are stored at multiple nodes.

Example 2 (Node Selection with a Locational Index). Given node n1 that issues
the query, and the triple pattern tp = 〈?v1, p2, ?v2〉, the set of selected nodes
from I2L(n1) in Table 1c is {n1, n3}, since γ(p2) = {g2, g4}, n1 ∈ η(g2), and
n3 ∈ η(g4). The set of selected nodes could be {n2, n3} because n2 is also in
η(g2), but n1 may be preferable as it correponds to using the local repository.

5 Prefix-Partitioned Bloom Filters

Building upon the baseline of locational indexes, this section presents Prefix-
Partitioned Bloom Filters (PPBFs). The idea is to summarize entities and

6

properties in a graph as a Bloom Filter [2] and rely on efficient bitwise
operations on Bloom Filters to estimate if two graphs may have elements in
common. We use Bloom Filters since they provide space-efficient bit vectors,
and have previously been shown beneficial in reducing information processing for
distributed systems [20]. Such knowledge can be used during query processing
to reduce intermediate results by only evaluating triple patterns with a join
variable over graphs that may have common elements. As such, PPBFs are not
complementary to locational indexes, but encode similar information. As we shall
see, this further narrows down the list of relevant nodes for a given query.

A Bloom Filter B for a set S of size n is a tuple mathcalB = (b̂, H), where b̂ is
a bit vector of size m and H is a set of k hash functions. Each hash function maps
the elements from S to a position in b̂. To create the Bloom Filter of S, each hash
function in H is applied to each element in S, and the resulting positions in b̂ are
set. o is estimated to be an element of S if all the positions given by applying the
hash functions in H to o are set in b̂. If at least one corresponding bit is not set,
then it is certain that o 6∈ S. However, if all corresponding bits are set, it is still
possible that o 6∈ S, meaning a Bloom filter answers the question is o in S? with
either no or maybe, rather than no or yes. The probability of such false positives
is given by formula (1− e−kn/m)k [2]. Furthermore, the cardinality of a set that
is represented by a Bloom Filter where t bits are set, can be approximated by
the following formula [19]:

Ŝ−1(t) =
ln(1− t/m)

k · ln(1− t/m)
(5)

Given two sets s1 and s2 and their Bloom Filters B1 and B2, with bit vectors
of the same size and with the same hash functions, B1&B2 approximates the
Bloom Filter of s1 ∩ s2, and B1|B2 corresponds to the Bloom Filter of s1 ∪
s2 [12]. Therefore, the number of URIs in two graphs can be approximated
using Formula 5 on the Bloom Filter resulting of applying the bitwise and on
the graphs’ Bloom Filters.

5.1 Partitioning Bloom Filters

In order to have a relatively low false positive probability, the bit vectors should
have multiple bits per each possible element. However, in large scale scenarios,
e.g., with 500 million distinct URIs, so large bit vectors are not feasible to store
for all graphs. If we instead use as few bits as the largest PPBF use, we would still
have a high false-positive rate (just above 51% in our experiments). Therefore,
instead of having a unique Bloom Filter per graph, we will have a prefix-based
partitioning, with a Bloom Filter for each different URI prefix used in the graph.

This has the advantage that not only do most partitions have a low
false-positive rate (less than 0.1% in our experiments in Section 7), but
even for the partitions that have a high false-positive rate, this is more
tolerable since if two URIs have the same prefix, they are more likely
to be contained in the same graph, since a prefix typically encodes the
domain/source. The prefix of a URI is the URI minus the name of the

7

entity, e.g., the URI http://dbpedia.org/resource/Auckland has the prefix
http://dbpedia.org/resource and the name Auckland.

Definition 4 (Prefix-Partitioned Bloom Filter). A PPBF BP is a 4-tuple
BP = 〈P, B̂, θ,H〉 with the following elements:
• a set of prefixes P ,
• a set of bit vectors B̂,
• a prefix-mapping function θ : P → B̂, and
• a set of hash functions H.

All bit vectors in B̂ have the same size. For each pi ∈ P , Bi = (θ(pi), H), is the
Bloom Filter that encodes the URIs’ names with prefix pi. Bi is called a partition
of BP .

The false positive risk of BP , is given by its partition with the highest risk. A
PPBF for a graph g is denoted BP (g) and corresponds to the PPBF for the set
of URIs in g. The cardinality of a PPBF is the sum its partitions’ cardinalities.

Example 3 (Prefix-Partitioned Bloom Filter). Inserting a URI into an
Unpartitioned Bloom Filter is visualized in Figure 2a. Inserting the same URI
into a PPBF is visualized in Figure 2b. Only the name of the entity is hashed,
and its hash values set bits only in the partition of its prefix.

...

h1 h2 hk

http://dbpedia.org/resource/Auckland

...

(a) Unpartitioned Bloom Filter

...

h1 h2 hk

http://dbpedia.org/resource/Auckland

...

dbo

...
dbpdbr

......

(b) Prefix-Partitioned Bloom Filter

Fig. 2: Insertion of a URI into an Unpartitioned Bloom Filter and a Prefix-
Partitioned Bloom Filter. dbo, dbr and dbp are short for prefixes from DBpedia,
ontology, resource and property, respectively.

For simplicity, we say that a URI u with prefix p may be in a PPBF BP ,
denoted u

∃BP , iff all the positions given by the hash functions applied to u’s
name are set in the bit vector θ(p). Correspondingly, we say that a PPBF BP
is empty, denoted BP = ∅ iff no bit in any partition in BP is set, or it has
no partitions. Given that the intersection of two Bloom Filters is given by the
bitwise and operation, the intersection of two PPBFs is given by:

Definition 5 (Prefix-Partitioned Bloom Filter Intersection). The
intersection of two PPBFs with the same set of hash functions H and bit vectors
of the same size, denoted BP1 ∩ BP2 , is BP1 ∩ BP2 = 〈P∩, B̂∩, θ∩, H〉, where
P∩ = BP1 .P ∩ BP2 .P , B̂∩ = {BP1 .θ(p) and BP2 .θ(p) | p ∈ P∩}, and θ∩ : P∩ → B̂∩.

That is, partitions with the same prefix are intersected, while other partitions
are not part of BP1 ∩ BP2 . The intersection of two PPBFs thereby approximates
the common URIs of the graphs that they represent, and Formula 5 can use used
to approximate the number of common URIs.

8

Example 4 (Prefix-Partitioned Bloom Filter Intersection). The intersection of
two Unpartitioned Bloom Filters is visualized in Figure 3a. The intersection of
two PPBFs is visualized in Figure 3b.

...

...and

...

B1

B2

B1 ∩ B2

(a) Unpartitioned Bloom Filter

dbr dbp dbo

and

B1

B2

B1 ∩ B2

(b) Prefix-Partitioned Bloom Filter

Fig. 3: Intersection of Unpartitioned Bloom Filters and Prefix-Partitioned Bloom
Filters. dbo, dbr and dbp are short for prefixes from DBpedia, ontology,
resource and property, respectively.

Building a PPBF for a graph is straightforward. For each URI in the graph,
its prefix p identifies the relevant partition θ(p), and the application of hash
functions H to its name determines the bits to set in θ(p). If θ is not defined for
p, it is a bit vector with no bits set, before applying the hash functions.

The intersection of PPBFs can be used at query processing time to prune
graphs if they do not have joinable entities for queries with a join variable,
even if they contain corresponding URIs. Before execution time, each node can
compute PPBFs for the graphs in its local datastore and download PPBFs from
nodes in the neighborhood to compute the approximate number of URIs of the
graphs in the local datastore in common with the reachable graphs. Any network
maintenance strategy could be used to ensure regular updates in order to keep
the approximations up-to-date, e.g. periodic shuffles [1].

Definition 6 (Prefix-Partitioned Bloom Filter Index). Let N be the set
of nodes, U the set of URIs, and G the set of graphs, a PPBF index is a tuple
IiP (n) = 〈υ, η〉 with υ : U → 2G and η : G → 2N . υ(u) returns the set of graphs
gs such that u

∃BP (g), ∀g ∈ gs. η(g) returns the set of nodes ns such that
g ∈ Gni

∀ni ∈ ns and ni is within i hops from n.

5.2 Matching Triple Patterns to Nodes

The relevant nodes for a triple pattern have graphs containing all URIs given
in the triple pattern. PPBFs allow for efficiently checking if the graph has these
URIs. Similarly to matching triple patterns using the locational index, first, we
find the graphs with triples that match the triple patterns in the query. Then,
for every pair of triple patterns that share a join variable, we prune graphs that,
even if they are relevant for each triple pattern, do not have any common URI.
Finally, the set of relevant nodes for each triple pattern is obtained, from these
reduced set of relevant graphs, in the same way as when using the locational
index.

Algorithm 1 shows how a PPBF index is used to identify the relevant nodes to
evaluate the triple patterns in a BGP bgp. Given the PPBF index IiP (n) = 〈υ, η〉,
the graph mapping Mg, which associates triple patterns to set of graphs, is
initialized (line 2) for every tp ∈ bgp as the set of graphs gs such that u

∃BP (g)

9

Algorithm 1 Match BGP To PPBF Index

Input: BGP bgp; Node n; PPBF Index IiP (n) = 〈υ, η〉
Output: Node Mapping Mn

1: function matchBGPToPPBFIndex (bgp,n,IiP)
2: Mg ← { (tp, range(IiP (n).υ) ∩

⋂
t∈uris(tp) I

i
P (n).υ(t)) : tp ∈ bgp }

3: M ′
g ← { (tp, ∅) : tp ∈ bgp }

4: for all tp1, tp2 ∈ bgp s.t. vars(tp1) ∩ vars(tp2) 6= ∅ do
5: G′

1, G
′
2 ← ∅

6: for all (g1, g2) s.t. g1 ∈Mg(tp1) and g2 ∈Mg(tp2) do
7: if BP (g1) ∩ BP (g2) 6= ∅ then
8: G′

1 ← G′
1 ∪ {g1}

9: G′
2 ← G′

2 ∪ {g2}
10: if G′

1 6= ∅ ∧G′
2 6= ∅ then

11: M ′
g(tp1)←M ′

g(tp1) ∪ {G′
1}

12: M ′
g(tp2)←M ′

g(tp2) ∪ {G′
2}

13: else
14: M ′

g ← {(tp, ∅) : tp ∈ bgp}
15: break
16: return { (tp,

⋃
g∈M′g(tp)

takeOne(IiP (n).η(g))) : tp ∈ bgp }

for all g ∈ gs if the set of URIs in tp, uris(tp), is not empty, or range(IiP (n).υ)
otherwise. The function uris(tp) returns the set of URIs in the triple pattern tp.
Lines 4-15 select among all the relevant graphs for the triple patterns, computed
in line 2, the ones that have some URIs in common for triple patterns with a
common join variable. This is, the algorithm selects the graphs that may satisfy
the join condition. The PPBFs of the relevant graphs, BP (g1) and BP (g2) are
used to approximate if these graphs have any URI in common (line 7), and
in such case, these graphs are selected as relevant for tp1 and tp2, respectively
(lines 8-9). Once all the relevant graphs have been considered, if any of them have
been selected, then the graph mapping M ′g is extended with values for the triple
patterns tp1 and tp2 (lines 11-12). In other case, it is not possible to find answers
for the given bgp and therefore the graph mapping M ′g is initialized again and
the loop ends (lines 14-15). Finally, the node mapping Mn is computed in line 16
by using the selected graphs in M ′g and the function IiP (n).η(g). The function
takeOne(ns) returns one of the nodes in ns, if the number of hops between
n and the nodes in ns is known, then takeOne(ns) could be implemented to
take the node closest to n. In that case, if triple pattern tp is mapped to {g1},
IiP (n).η(g1) = {n1, n2}, and n1 is closer to n than n2, takeOne({n1, n2})=n1,
and therefore Mn(tp) = {n1} The returned node mapping Mn specifies which
nodes should be queried for each triple pattern.

Example 5 (Node Mapping). Consider the query Q in Listing 1.1 and the set of
graphs in Figure 1a and IiP in Table 1a. Applying Algorithm 1 to Q’s bgp results
in the set of mappings in Figure 1b. Besides checking whether each URI in a triple
pattern is contained within a PPBF, the algorithm prunes g4 from the second
triple pattern. This is the case, since p2, b

∃BP (g4), but BP (g4) ∩ BP (g3) = ∅.

10

Since g3 is matched to the third triple pattern, and they join on ?v2, g4 is pruned.

1 SELECT ∗ WHERE {
2 ?v1 p1 b .
3 b p2 ?v2 .
4 ?v2 p3 ?v3
5 }

Listing 1.1: Example query Q.

Table 1: PPBF index for a set of graphs and the resulting node mappings
(a) IiP (n1)

u υ(u) g η(g)

p1 {g1, g4} g1 {n1}
p2 {g2, g4} g2 {n1, n2}
p3 {g3} g3 {n2, n3}
b {g1, g2, g4} g4 {n3}

(b) Mn

tp Mn(tp)

(?v1, p1, b) {n1}
(b, p2, ?v2) {n1}

(?v2, p3, ?v3) {n2}

Using intersections of PPBFs allows for reducing the set of graphs to consider
for a query. This is evident from our experiments (Section 7), where multiple
intersections of PPBFs with common prefixes were indeed empty, and less data
as a result was transferred between nodes.

6 Query Processing

For simplicity, and in-line with recent proposals on query processing [10,22], we
assume that queries are evaluated triple pattern by triple pattern, and that
expensive operations, such as joins, are executed locally at the issuer after
executing relevant triple patterns over graphs on nodes identified by our indexes.
The evaluation of a triple pattern relies on evaluating the triple pattern against
the graphs in the local repositories of a set of nodes. Therefore, we define
operators to evaluate a triple pattern using either a locational or PPBF index.

Definitions 7 and 8 formally specify operators for retrieving a set of nodes
given a triple pattern, using a locational index and PPBF index, respectively.
Definition 9 then specifies an operator for evaluating a triple pattern given such
a set of nodes.

Definition 7 (Locational Selection σL). Let the function I(IiL(n), p) denote
the set of nodes that is obtained by using IiL(n) to find the relevant nodes to
evaluate a triple pattern with predicate p, and n1 ∈ IiL(n) denote that n1 ∈
η(g) for some g ∈ IiL(n).γ(p). Locational selection for a triple pattern tp on a
locational index IiL(n) of depth i , denoted σLtp(I

i
L(n)), is the set {n1 | n1 ∈ IiL(n)}

if ptp is a variable, or {n1 | n1 ∈ I(IiL(n), ptp)} otherwise.

Definition 8 (PPBF Selection σP). Let Mn be the node mapping obtained
after applying Algorithm 1 to the BGP which includes tp in the query Q. Given
a query Q, the PPBF selection for a triple pattern tp ∈ bgp and bgp a BGP of
Q, obtained using the PPBF index IiP (n) of depth i, denoted σPtp,Q(IiP (n)), is the
selection of the nodes Mn(tp).

11

Definition 9 (Node Projection πN). Given a set of nodes N , node projection
on a triple pattern, denoted πNtp(N), is the set of triples obtained by evaluating
tp on the local datastore of the nodes in N . Given the function T (n, tp), that
evaluates tp on n’s local datastore, node projection is formally defined as:
πNtp(N) =

⋃
n∈N
T (n, tp)

Implementation Details The proposed indexes can be used in a broad
range of applications. However, motivated by recent efforts in the area of
decentralization [1], we show their benefits in the context of an unstructured
P2P system. Nodes in an unstructured P2P network often have a limited amount
of space for datastores. As such, it does not make sense for a node to download
entire graphs. Therefore, we adopt the basic setup outlined in Piqnic [1]. That is,
graphs are split into smaller subgraphs, called fragments, based on the predicate
of the triples. Each fragment is replicated among multiple nodes. For our setup,
we simply view a fragment as a graph and extend the original graph’s name with
the predicate in the subgraph. Hence, there is no need to encode predicates in
PPBFs, which therefore only contain URIs that are either a subject or object in
the fragment.

In Piqnic, query processing is based on the brTPF [10] style of processing
queries; triple patterns are flooded throughout the network individually, bound
by previous mappings. Locational indexes and PPBFs are useful for avoiding
flooding since the query processor can use them to identify precisely which nodes
are to be queried. Specifically, a query Q at a node n is processed as follows:

1. Reorder triple patterns in Q based on selectivity. More selective triple
patterns (estimated by variable counting) are evaluated first.

2. Evaluate each triple pattern tp ∈ Q by the following steps:
(a) Apply either locational selection (σL) or PPBF selection (σP) on n’s

local index in order to select the nodes Ntp that contain answers to tp.
(b) For each node ni ∈ Ntp, apply node projection (πN) by evaluating tp on

ni’s local datastore.
3. Compute the answer to the query by combining intermediate results from

previous steps using the SPARQL operators specified in the query.

Since we use the brTPF style of query processing, the iterative process in step
2 is completed by sending bulks of bindings from previously evaluated triple
patterns to the nodes selected by the indexes.

7 Evaluation

To evidence the gains in performance and potential benefits of using our proposed
indexing schemes, we implemented locational indexes and PPBF indexes as a
module in Java 83. We modified Apache Jena4 to use the indexes during query
processing and extended Piqnic [1] with support for our module in order to
provide a fair comparison with an existing system.

3 The source code is available on our GitHub at https://github.com/Chraebe/PPBFs
4 https://jena.apache.org/

12

https://github.com/Chraebe/PPBFs
https://jena.apache.org/

7.1 Experimental Setup

Our experiments were run on a single server with 4xAMD Opteron 6373
processors, each with 16 cores (64 cores in total) running at 2.3GHz, with 768KB
L1 cache and 16MB L2 and L3 cache. The server has 516GB RAM. We executed
several experiments with variations of some parameters, such as ttl, replication
factor, and number of neighbors. However, due to space restrictions, we only
show the most relevant results in this section. Additional results can be found
on our website5. The results presented in this section focus on experiments with
the following parameters: 200 nodes, TTL: 5, number of neighbors per node: 5.
The timeout was set to 1200 seconds (20 minutes). The replication factor was
5%, meaning that with 200 nodes, fragments were replicated on 10 nodes. While,
in theory, these parameters should give nodes access to well over 200 nodes, in
reality nodes within the same neighborhood often share some neighbors, giving
them access to far less nodes. In our experiments, each node had, on average,
access to 129.43 nodes. By increasing the TTL value to a sufficiently large
number, our indexes could provide a global view, however as nodes are free
to join and leave the network, keeping this global view up-to-date can easily
become quite expensive. Each dataset was assigned to a random owner, which
replicated the fragments across its neighborhood.

We use the queries and datasets in the extended LargeRDFBench [11].
LargeRDFBench comprises 13 different datasets, some of them interconnected,
with over 1 billion triples. It includes 40 SPARQL queries, divided into four sets:
Simple (S), Complex (C), Large Data (L), and Complex and Large Data (CH).
We measure the following metrics:
• Execution Time (ET): The amount of time in milliseconds spent to process

a given query.
• Completeness (COM): The percentage of the query answers obtained by a

system. To determine completeness, we computed the results in a centralized
system and compared them to the results given by the decentralized setup.

• Number of Transferred Bytes (NTB): The total number of transferred bytes
between nodes in the network during query processing.

• Number of Exchanged Messages (NEM): The total number of messages
exchanged, in both directions, between nodes during query processing.

Queries were run sequentially on random nodes. At most 37 nodes were active
at the same time during our experiments. We report averages over three runs.

Storage and Building Times As we shall see, in most real cases PPBFs
outperform locational indexes in terms of performance and data transfer.
However, in our experiments, the index creation time was, on average 6,495
ms for locational indexes and 10,992 ms for PPBF indexes. PPBFs used 427MB
per node, while locational indexes used 685KB per node. Furthermore, matching
triple patterns to nodes is less complex for locational indexes. This means, that
for cases where resources are limited, locational indexes might overall be the
best choice, given that they still increase performance overall.

5 Additional results are available on our website at https://relweb.cs.aau.dk/ppbfs

13

https://relweb.cs.aau.dk/ppbfs

7.2 Experimental Results

During all experiments, we compared Piqnic without modifications, Piqnic
with locational indexes, and Piqnic with PPBF indexes. The objective is to
verify that locational indexes and PPBF indexes can improve query processing,
especially for the typically challenging queries.

Performance Gains Using Locational Indexes and PPBF Indexes
Figure 4 shows ET for query group S. The extended versions with locational
indexes and PPBF indexes perform significantly better than the unmodified
version for all the queries. Moreover, the version extended with PPBF indexes
is more efficient than the version extended with locational indexes in all cases
except queries S6 and S7. For queries S6 and S7, using the PPBF indexes does
not allow for pruning any additional nodes than using the locational indexes, and
so the slightly larger overhead of testing the graphs for common URIs leads to
slightly larger query processing times. However, since all these times are below
100ms, this is negligible compared to the improvements that PPBF indexes
provide for other queries. Moreover, for query S9, a locational index does not
help. This is due to a triple pattern where all constituents are variables. Because
of this, the locational index returns all nodes within the neighborhood, the same
set of nodes that Piqnic uses. The version extended with the PPBF indexes is
able to eliminate some of these nodes and thus improve performance.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

10−2

100

102

101

103

E
x
ec

u
ti

o
n

T
im

e
(s

)

PIQNIC Locational PPBF

Fig. 4: ET for Piqnic, Piqnic with locational indexes, and Piqnic with PPBF
indexes over query group S. Note that the y-axis is in log scale.

Figure 5 shows ET for query groups L and CH. Generally, queries which
were not computable before, are computable with PPBF indexes, alluding to
a significantly improved performance. For some queries, such as S14, CH3 and
CH6, the improvement was especially significant. Though, some especially large
queries could not be processed within the time out. Given enough time, however,
we were able to execute these with ET between 2K-10K seconds. The only
exception was L5, which has proven to be particularly challenging for state of
the art federated processors [11]. Even though we do not show the results for
query group C, they showed the same pattern; an improvement in performance
using locational indexes, and further improvement using PPBF indexes.

In our experiments, all queries that finished had the same completeness for
all approaches. Figure 6b shows the average COM over query groups. Since the
indexes make query processing more efficient, we experienced fewer timeouts,
which caused the higher completeness for some query groups.

14

L1 L2 L3 L4 L5 L6 L7 L8 CH1 CH2 CH3 CH4 CH5 CH6 CH7

10−1

101

103

101

103

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

T
im

e
o
u
t

E
x
ec

u
ti

o
n

T
im

e
(s

) PIQNIC Locational PPBF

Fig. 5: ET for Piqnic, Piqnic with locational index, and Piqnic with PPBF
indexes over query groups L and CH. Note that the y-axis is in log scale.

Index Impact on Network Traffic One of the major advantages of the
indexes presented in this paper is the fact that flooding can be avoided, thus
the number of messages exchanged between nodes is significantly reduced.

To evidence the improvement wrt. the network traffic, we measured the
amount of messages exchanged between nodes, and the amount of transferred
data in bytes, during the execution of the queries in the query load. Figure 6a
shows the number of exchanged messages, averaged over the query groups. As
expected, both indexes reduce the amount of messages sent throughout the
network by avoiding flooding. This reduction has a stronger impact when the
number of messages for the unmodified approach is very high. Furthermore, the
PPBF indexes can further reduce the number of nodes queried, thereby further
reducing the number of messages sent throughout the network during query
processing.

S C L CH

101

104

107

A
v
g
.

N
E

M

PIQNIC Locational PPBF

(a) Average NEM

S C L CH

0

20

40

60

80

100

A
v
g
.

C
o
m

p
le

te
n
es

s
(%

) PIQNIC Locational PPBF

(b) Average COM

Fig. 6: Average NEM and COM for Piqnic, locational index, and PPBFs over
query groups. Note that for Figure 6a, the y-axis is in log scale.

The amount of transferred bytes during query execution (Figure 7 for query
group S), shows the same general tendency. Using indexes can reduce the
number of nodes queried and thereby the amount of transferred bytes since some
fragments are pruned. Furthermore, a PPBF index ensures that only relevant
fragments are queried, thus reducing NTB even further. The reduced NTB in
practice means, that less time is spent transferring data during query execution.
This increases performance, especially for queries with large intermediate results.

Impact of Other Parameters We ran experiments where we varied the time-
to-live value, replication factor, and the number of neighbors for each node. For
all these experiments, query execution times for the modified approaches were

15

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

103

105

107

103N
T

B
(b

y
te

)

PIQNIC Locational PPBF

Fig. 7: NTB for Piqnic, Piqnic with locational index, and Piqnic with PPBF
indexes over query group S. Note that the y-axis is in log scale.

only negligibly affected by the varied network structure, since node matching
still only require simple lookups. For the unmodified approach, query execution
times were much more affected by the varied network structure. This means,
that in terms of completeness, we saw a much greater improvement for the
modified approaches than in Figure 6b, since less queries were completed by the
unmodified approach.

8 Conclusions

In this paper, we proposed two schemes for indexing RDF nodes in decentralized
architectures: Locational Indexes and Prefix-Partitioned Bloom Filter (PPBF)
indexes. Locational indexes establish a baseline, that PPBF indexes extend to
provide much more precise indexes. PPBF indexes are based on Bloom Filters
and provide summaries of the graph’s constituents that are small enough to
retrieve the indexes of the reachables nodes without using too much time or
space. We implemented both indexing schemes in a module, that could be
adapted for use in any decentralized architecture or federated query processing
engine. Our experiments show, that both indexing schemes are able to reduce
the amount of traffic within the network, and thereby improve query processing
times. In the case of PPBF indexes, the improvement is more significant than for
locational indexes. Using PPBFs during join processing to check if a fragment
may contain matches given specific values to a join variable could further speed
up query processing. This, and studying the impact of using filters with varying
sizes, is part of our future work.

Acknowledgments. This research was partially funded by the Danish Council
for Independent Research (DFF) under grant agreement no. DFF-8048-00051B
& DFF-4093-00301B and Aalborg University’s Talent Programme.

References

1. Aebeloe, C., Montoya, G., Hose, K.: A Decentralized Architecture for Sharing and
Querying Semantic Data. In: ESWC 2019. pp. 3–18 (2019)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.: SPARQL web-
querying infrastructure: Ready for action? In: ISWC 2013. pp. 277–293 (2013)

16

4. Cai, M., Frank, M.R.: Rdfpeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In: WWW. pp. 650–657 (2004)

5. Čebirić, Š., Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu, I., Troullinou,
G., Zneika, M.: Summarizing semantic graphs: a survey. VLDBJ (Dec 2018)

6. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In:
ICDCS. pp. 23–32 (2002)

7. Folz, P., Skaf-Molli, H., Molli, P.: Cyclades: A decentralized cache for triple pattern
fragments. In: ESWC 2016, pp. 455–469 (2016)

8. Grall, A., Folz, P., Montoya, G., Skaf-Molli, H., Molli, P., Sande, M.V., Verborgh,
R.: Ladda: SPARQL queries in the fog of browsers. In: ESWC 2017 Satellite Events.
pp. 126–131 (2017)

9. Grall, A., Skaf-Molli, H., Molli, P.: SPARQL query execution in networks of web
browsers. In: DeSemWeb@ISWC 2018 (2018)

10. Hartig, O., Aranda, C.B.: Bindings-restricted triple pattern fragments. In: OTM
2016 Conferences. pp. 762–779 (2016)

11. Hasnain, A., Saleem, M., Ngomo, A.N., Rebholz-Schuhmann, D.: Extending
largerdfbench for multi-source data at scale for SPARQL endpoint federation. In:
SSWS@ISWC. pp. 203–218 (2018)

12. Jeffrey, M.C., Steffan, J.G.: Understanding bloom filter intersection for lazy
address-set disambiguation. In: SPAA 2011. pp. 345–354 (2011)

13. Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Miliaraki, I., Magiridou, M., Papadakis-
Pesaresi, A.: Atlas: Storing, updating and querying RDF(S) data on top of DHTs.
J. Web Sem. 8(4), 271–277 (2010)

14. Karnstedt, M., Sattler, K., Richtarsky, M., Müller, J., Hauswirth, M., Schmidt, R.,
John, R.: UniStore: Querying a DHT-based Universal Storage. In: ICDE 2007. pp.
1503–1504 (2007)

15. Mansour, E., Sambra, A.V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A.,
Aboulnaga, A., Berners-Lee, T.: A demonstration of the solid platform for social
web applications. In: WWW Companion. pp. 223–226 (2016)

16. Molli, P., Skaf-Molli, H.: Semantic Web in the Fog of Browsers. In:
DeSemWeb@ISWC 2017 (2017)

17. Montoya, G., Aebeloe, C., Hose, K.: Towards efficient query processing over
heterogeneous RDF interfaces. In: ISWC 2018 Satellite Events. pp. 39–53 (2018)

18. Montoya, G., Skaf-Molli, H., Hose, K.: The odyssey approach for optimizing
federated SPARQL queries. In: ISWC 2017. pp. 471–489 (2017)

19. Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic
length adaptation for bloom filters. Distributed and Parallel Databases 28(2-3),
119–156 (2010)

20. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. IEEE Communications Surveys and Tutorials 14(1), 131–
155 (2012)

21. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data
summaries for processing live queries over linked data. WWW 14(5-6), 495–544
(2011)

22. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D.,
Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-cost knowledge
graph interface for the web. J. Web Semant. 37-38, 184–206 (2016)

23. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays. J. Network and Systems
Management 13(2), 197–217 (2005)

17

	Decentralized Indexing over a Network of RDF Peers

