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ABSTRACT

SPARQL query services that balance processing between clients and
servers become more and more essential to handle the increasing
load for open and decentralized knowledge graphs on the Web. To
this end, Linked Data Fragments (LDF) have introduced a founda-
tional framework that has sparked research exploring a spectrum
of potential Web querying interfaces in between server-side query
processing via SPARQL endpoints and client-side query processing
of data dumps. Current proposals in between typically suffer from
imbalanced load on either the client or the server. In this paper, to
the best of our knowledge, we present the first work that combines
both client-side and server-side query optimization techniques in
a truly dynamic fashion: we introduceWiseKG, a system that em-
ploys a cost model that dynamically delegates the load between
servers and clients by combining client-side processing of shipped
partitions with efficient server-side processing of star-shaped sub-
queries, based on current server workload and client capabilities.
Our experiments show thatWiseKG significantly outperforms state-
of-the-art solutions in terms of average total query execution time
per client, while at the same time decreasing network traffic and
increasing server-side availability.
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1 INTRODUCTION

The Semantic Web has over the past two decades seen a steady in-
crease in the amount of data published as Linked Open Data (LOD),
forming a Web of interconnected Knowledge Graphs (KG) [8]. Such
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KGs are accessible either via public SPARQL endpoints, download-
able data dumps, KG partitions, or dereferenceable URIs. The con-
tinued work on Linked Data is fueled by the prospects of such
interconnected KGs finally making the vision of an interlinked Web
of Data a reality, and at the same time providing scalable query
processing to its users. However, as provisioning and maintaining
access to KGs is still a huge burden for data publishers [2, 26, 30],
low availability of public SPARQL endpoints [5, 29] remains one of
the greatest obstacles to this vision.

In order to tackle this bottleneck, various recent proposals em-
phasize decentralization as a means to lift this burden off the data
providers. On one hand, several approaches have focused on the de-
centralization of the data [2, 3, 9]. While these approaches increase
the availability of the data, their query processing capabilities are
significantly less efficient than approaches with a powerful central-
ized server or approaches that ship full data dumps to powerful
clients for local processing. On the other hand, several recent stud-
ies [1, 6, 12, 19, 20] have focused on the decentralization of the
query processing tasks. These approaches divide the processing
burden between servers and clients. Even though the servers might
be powerful, they will struggle with highly concurrent query loads.
Therefore, the clients, which might have free resources, will take
some of the query processing tasks for themselves rather than
waiting for an overloaded server.

To this end, Triple Pattern Fragments (TPF) [30] reduces the
server load significantly by processing joins on the client-side while
only processing individual triple patterns on the server. To avoid
processing non-selective triple patterns on the server, the client
locally processes joins using previously obtained bindings in the
request (one binding at a time), potentially leading to smaller inter-
mediate results. Yet, this kind of processing potentially leads to a
large number of server requests during query processing, creating
a significant overhead on the network traffic. As opposed to just
providing triple pattern execution on the server and full join capa-
bilities on the client, two approaches have recently been proposed
to optimize SPARQL query processing. Star Pattern Fragments
(SPF) [1] exploits server-side evaluation of star-shaped subqueries,
while smart-KG [6] exploits client-side evaluation of star-shaped
subqueries by retrieving compressed KG partitions from the server.
However, the potential benefit of being able to dynamically switch
between strategies based on the current server load, caching, etc.,
remains mostly unexploited by the current state of the art.

https://doi.org/10.1145/3442381.3449911
https://doi.org/10.1145/3442381.3449911


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Azzam and Aebeloe, et al.

Hence, in this paper, we present WiseKG, a novel approach that
combines the strengths of the state of the art and further advances
them by finding a novel balance between server and client load.
Based on the current load on the server,WiseKG decides whether
subqueries should be processed on the client or on the server. The
underlying cost model considers parameters such as CPU load,
estimated network transfer time, and currently available resources
at the client to determine where to process a particular part of
the query. By applying this cost model, servers can dynamically
share the query processing tasks with the clients, making better use
of server resources and retaining high performance even during
high load. At the same time, they achieve significantly lower query
processing times and, by processing subqueries locally on the server,
avoid unnecessary data shipping during periods with an overall
low query processing load.

In summary, we make the following contributions:
• We present WiseKG, a novel system that dynamically shifts
the query processing load between client and server.
• WiseKG employs a cost model to minimize the total time
consumed by client-side and server-side components while
considering the current load on the server and the client.
• Our extensive evaluation using demanding query workloads
on real-world KGs as well as synthetic KGs up to 1 billion
triples shows that WiseKG significantly outperforms the
state of the art.

The remaining sections are organized as follows. We cover back-
ground in Section 2. Section 3 provides a motivating example. Sec-
tion 4 gives an overview of WiseKG, followed by a presentation
of the server-side cost model. Section 5 details SPARQL query pro-
cessing on the client- and server-side. Section 6 then presents an
empirical evaluation of WiseKG. Last, we conclude the paper and
provide an outlook on future work in Section 7.

2 BACKGROUND

RDF and SPARQL. We assume the readers’ familiarity with base
technologies such as RDF and SPARQL, from which we borrow
standard notation such as RDF Turtle1 or algebra operators [25]; by
𝑠𝑢𝑏 𝑗 (𝑡), 𝑝𝑟𝑒𝑑 (𝑡), 𝑜𝑏 𝑗 (𝑡) we to refer to the components of a single
RDF triple 𝑡 ∈ 𝐺 , such that these components are RDF terms (i.e.
URIs/IRIs, blank nodes, and literals). An RDF knowledge graph (KG)
𝐺 is a set of such triples, where 𝑠𝑢𝑏 𝑗 (𝐺), 𝑝𝑟𝑒𝑑 (𝐺), 𝑜𝑏 𝑗 (𝐺) denote
subjects, predicates, and objects in 𝐺 .

RDF KGs can be queried using the query language SPARQL,
which relies on matching graph patterns for easy access to RDF
stores. The fundamental graph pattern is a triple pattern 𝑡𝑝 , which
is an RDF triple that permits variables from an infinite set 𝑉 of
variables, disjoint with the previously mentioned RDF terms.

A Basic Graph Pattern (BGP) is a set of triple patterns {𝑡𝑝1 . . . 𝑡𝑝𝑛}
that can be viewed as a conjunctive query; note that while semanti-
cally, order is not relevant, we use sequences (. . .) instead of sets
{. . .} in this paper to indicate execution (left-linear) order in a query
plan, i.e., for instance (𝑡𝑝1, . . . , 𝑡𝑝𝑛) stands for a left-linear query
execution plan (. . . (𝑡𝑝1 ⊲⊳ 𝑡𝑝2) ⊲⊳ . . .) ⊲⊳ 𝑡𝑝𝑛), whereas non-left-
linear plans will be denoted by respective explicit parentheses.

1http://www.w3.org/TR/2014/REC-turtle-20140225/

For any pattern 𝑃 , we denote by 𝑣𝑎𝑟 (𝑃) its variables. The so-
lutions (or, answers, resp.) of a (query) pattern 𝑃 over a graph
𝐺 , denoted [[𝑃]]𝐺 , are given as sets Ω of bindings, i.e., mappings
of the form, 𝜇 : 𝑣𝑎𝑟 (𝑃) → 𝑅 to the set 𝑅 of RDF terms, such
that 𝐺 |= 𝜇 (𝑃), i.e. 𝜇 (𝑃) forms a (sub)graph entailed by 𝐺 . Two
mappings 𝜇1, 𝜇2 are called compatible, denoted as 𝜇1 | |𝜇2 if for any
𝑣 ∈ 𝑑𝑜𝑚(𝜇1) ∩ 𝑑𝑜𝑚(𝜇2), 𝜇1 (𝑣) = 𝜇2 (𝑣), cf. [25] for details.

A star pattern 𝑠𝑝 = {𝑡𝑝1 ...𝑡𝑝𝑘 } is a BGP such that 𝑠𝑢𝑏 𝑗 (𝑡𝑝𝑖 ) =
𝑠𝑢𝑏 𝑗 (𝑡𝑝 𝑗 ) for all 𝑖, 𝑗 ∈ {1, . . . , 𝑘}, i.e., the subjects of all triple pat-
terns are the same. We refer to 𝑘 as the star-size of 𝑠𝑝 .

Note that each complex BGP 𝑃 can be decomposed into a set of
star patterns S(𝑃), called the (star-)decomposition of 𝑃 as follows:

S(𝑃) = {{𝑡 ∈ 𝑃 | 𝑠𝑢𝑏 𝑗 (𝑡) = 𝑠} | 𝑠 ∈ 𝑠𝑢𝑏 𝑗 (𝑃)}

Along the above-mentioned notation for query plans as se-
quences of patterns being interpreted as left-linear query plans,
we will analogously write query plans that evaluate patterns per
stars as permutations of S(𝑃), e.g., the query plan shown in Fig. 1b
could be written as (𝑠𝑝1, 𝑠𝑝2, 𝑡𝑝6), indicating an execution plan at
the level of joining star patterns as follows: ((𝑠𝑝1 ⊲⊳ 𝑠𝑝2) ⊲⊳ 𝑡𝑝).

The primary focus of this paper is on evaluating BGPs as the
fundamental retrieval functionality of SPARQL. However, more
complex patterns, such as 𝑈𝑛𝑖𝑜𝑛, 𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙 , and 𝐹𝑖𝑙𝑡𝑒𝑟𝑠 , are cov-
ered by our proposed system, which implements the full SPARQL
specification – for a more complete formalization we refer to [25].

2.1 Existing KG Interfaces

In this section, we define query interfaces for KGs following the
principles set by Linked Data Fragments (LDF) [30]. In essence,
LDF characterizes APIs that allow access to fragments of a KG 𝐺
through (specific to a particular instantiation of LDF) a limited
range of allowed query patterns that a client can submit to the
server; often with the goal to limit server-side computation cost
and to enable effective HTTP caching, while leaving evaluations of
more complex patterns to the client. Variations of LDF also offer
additional controls to ship intermediate bindings alongside with
queries or to control the “chunk size” of results through specifying
page sizes into which the results should be batched. Note that in
line with LDF [30] we also assume 𝐺 to be blank node-free.

In this paper, we omit details on LDF, such as metadata that is
sent along with query results and hypermedia controls. However,
we borrow from the original specification [30] and align formal
definitions and notations to uniformly present different APIs:

Definition 1 (adapted from [30]). An LDF API of a KG 𝐺

accessible at an endpoint URI 𝑢2 is a tuple 𝑓 = ⟨𝑠,Φ⟩ with
• a selector function 𝑠 (𝐺, 𝑃,Ω) that defines how a fragment Γ ⊆
𝐺 , or alternatively a set of fragments3 Γ∗ ⊆ 2𝐺 is constructed
upon calls to the API.
• a paging mechanism Φ(𝑛, 𝑙, 𝑜) parameterized by 𝑛, 𝑙, 𝑜 ∈ N0
denoting maximum page size, limit, and offset.

2Via this base URI the API can be accessed and queried as well as additional controls
can be submitted.
3We note that this is a generalization from the original LDF proposal, which – tech-
nically – could be realized, for instance, by returning RDF datasets in the sense of
SPARQL (consisting of a default graph and optionally a set of (named) graphs), or resp.
a set of quads instead of triples.

http://www.w3.org/TR/2014/REC-turtle-20140225/
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The selector function 𝑠 is parameterized by a graph𝐺 , pattern 𝑃 ,
and a set of bindings Ω4, where we define two variants, 𝑠 (·) and
𝑠∗ (·), which differ essentially in terms of returning either a single
graph or one subgraph per solution 𝜇 ∈ [[𝑃]]𝐺 :

𝑠 (𝐺, 𝑃,Ω) = {𝑡 ∈ 𝜇 (𝑃) | ∃𝜇 ∈ [[𝑃]]𝐺 : 𝐺 |= 𝜇 (𝑃)∧(∃𝜇 ′ ∈ Ω : 𝜇 ′ | |𝜇)}

𝑠∗ (𝐺, 𝑃,Ω) = {𝜇 (𝑃) | ∃𝜇 ∈ [[𝑃]]𝐺 : 𝐺 |= 𝜇 (𝑃) ∧ (∃𝜇 ′ ∈ Ω : 𝜇 ′ | |𝜇)}
As we will see, all LDF APIs discussed in this section can indeed

be expressed in terms of one of these two default selector functions.
The general paging mechanism Φ we use in this paper shall en-

able returning the result in batches, e.g., for LDF use cases where Γ
(or, resp., Γ∗) would be very large or retrieving the whole result is
not required or possible. Hence, we assume that Φ(𝑛, 𝑙, 𝑜) simply de-
fines a mechanism to divide Γ into partitions (or pages) {Γ1, . . . , Γ𝑘 },
where for each page Γ𝑖 it is guaranteed that |Γ𝑖 | < 𝑛 (i.e., Γ𝑖 does
not contain more than 𝑛 triples), and 𝑙 and 𝑜 , resp. would allow to
request the pages from Γ𝑜 to Γ𝑜+𝑙

5. We assume 𝑙 to default to 𝑙 = ∞,
o to default to 𝑜 = 1, and finally 𝑛 = ∞ signifying that whole graph
Γ should be returned.

In the following, we will explain different approaches on the
LDF framework’s spectrum, wrt. implications on server availability
under high numbers of concurrent clients:
Data Dumps offer the clients simple access to the entire KG. In
order to perform a SPARQL query, the clients have to download the
whole KG and run a local SPARQL engine themselves. This can be
a very beneficial solution for many clients with sufficient resources
but puts high processing cost on the client, plus the need for high
amounts of data transfers whenever the KG evolves/changes. Data
dumps can be characterized in terms of LDF by
• the selector function 𝑠 (·) as defined above,
• the only admissible form of 𝑃 andΩ are 𝑃 = {(?𝑠, ?𝑝, ?𝑜)} and
Ω = {∅}, i.e., 𝑠 (𝐺, 𝑃,Ω) boils down to the identity function,
• Φ: the only admissible parameter for Φ(𝑛, 𝑙, 𝑜) is Φ(∞, 1, 1) =
{Γ1} = {Γ}.

SPARQL endpoints provide efficient querying on the server side;
the query shipped to the server is typically evaluated in an efficient
triple store such as Virtuoso, Blazegraph, and Jena, etc., without
work for the clients, who receive the ready end result. This can be
characterized in terms of LDF as follows:
• while SPARQL endpoints usually directly return sets of bind-
ings, they can also be viewed as a variant of 𝑠∗ (·) by returning
subgraphs of the form 𝜇 (𝑃)6,
• any pattern 𝑃 is admissible;
• Ω = {∅}, unless VALUES patterns are considered, which could
be viewed as equivalent to binding restrictions a la LDF,
• Φ: while some SPARQL endpoints support other forms of
paging, the standard LIMIT and OFFSET operators for BPGs

4We note that this strict definition of allowed parameters for 𝑠 is not made in [30], but
we will rather use those here to describe the considered APIs uniformly.
5As such 𝑙 ,𝑜 should be viewed synonmous SPARQL’s LIMIT and OFFSET modifiers.
6Deriving 𝜇 is straightforward since, given 𝑃 , 𝜇 and 𝜇 (𝑃 ) are in a trivial 1-to-1 corre-
spondence. We prefer this interpretation of the LDF metaphor to SPARQL endpoints
over – as suggested in a side note in [30] – relying on encoding result sets as RDF
triples (such as using e.g. the informal RDF SPARQL result format from the SPARQL1.1
Test Case Structure, cf. https://www.w3.org/2009/sparql/docs/tests/README.html)
since the latter would not return subgraph(s) of𝐺 .

could be considered as LIMIT 𝑙 and OFFSET 𝑜 such that 𝑛 =

|𝑃 |; however, note that subsequent calls of SPARQL queries
with consecutive OFFSETs are in general not guaranteed to
behave deterministically.

SaGe is – in essence – a SPARQL endpoint with the ability to inter-
rupt queries under too much concurrent load on the server side [19].
That is, in principle, we can view SaGe as a variant of SPARQL
endpoints that, given a query 𝑃 whose execution exceeds a timeout
𝜏 , suspends it and only returns a partial result {Γ1, . . . , Γ𝑜−1}, along
with additional state information to the client. The client can (with
additional hypermedia controls using this state information) deter-
ministically continue exactly at offset 𝑜 in a subsequent call. Hence,
in times of high query load, SaGe uses this strategy to suspend
clients to avoid starvation of others. We note that, while the SaGe
server itself is stateless, i.e., it does not store the intermediate states
of the suspended queries, it handles the overall query execution
load incl. join processing for BGPs.
Triple Pattern Fragment (TPF) [30] is an interface to enable
live SPARQL querying with high availability and scalability by
restricting server capabilities to only answer single triple pattern
fragments and shifting processing of more complex patterns to
the client-side (with the expenses of a substantial increase in the
network traffic). In terms of the generic LDF framework, TPF is the
most straightforward “incarnation”, defined as:

• the selector function is 𝑠 (·) as defined above,
• the only admissible form of 𝑃 are triple patterns and Ω = {∅},
• Φ(𝑛, 𝑙, 𝑜): allows results to be “batched” into chunks of 𝑛
triples, whereas limit 𝑙 and offset 𝑜 cannot be set explicitly
in TPF.

Binding-Restricted Triple Pattern Fragments (brTPF) [12] is
an extension of TPF that reduces the network load through addi-
tionally permitting arbitrary Ω ≠ ∅. This ensures fewer requests
to the server plus faster query processing. However, brTPF still
potentially struggles with high numbers of concurrent clients or
queries with large intermediate results.
Star Pattern Fragments (SPF) [1] proposes to generalize brTPF
from single triples to handling star-shaped subqueries on the server.
Similar to TPF, more complex queries involving joins over stars
or single triples are processed on the client. Still, evaluating star-
shaped subqueries directly on the server may drastically reduce
the number of requests made during query processing while still
maintaining a relatively low server load since star patterns can be
answered relatively efficiently by the server [25]. For processing
joins efficiently, analogously to brTPF, bindings can be shipped
along with each star-shaped subquery. SPF, as an instance of LDF,
differs from brTPF with respect to the restriction of the selector
function and allowed patterns:

• 𝑠𝑆𝑃𝐹 (𝐺, 𝑃,Ω) = 𝑠∗ (𝐺, 𝑃,Ω), i.e., 𝑠∗ (·) is used to return results
per pattern solution,
• the only admissible form of 𝑃 are star-shaped BGPs,
• Ω can be any set of bindings,
• Φ(𝑛, 𝑙, 𝑜): as solutions are returned per pattern solution, 𝑛
is fixed to the star pattern of size 𝑘 but SPF also allows to
paginate over solutions, i.e., retrieving results in chunks of 𝑙
(iterating over increasing offsets 𝑜 := 𝑜 + 𝑙 ).

https://www.w3.org/2009/sparql/docs/tests/README.html
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Experiments [1] show that SPF (compared to brTPF) can decrease
the number of requests made to the server and intermediate re-
sult sizes transferred to the client, maintaining a comparably low
network load.
smart-KG [6] (SKG) is another alternative paradigm that combines
TPF with the idea to ship graph partitions per star-shaped patterns.
To this end, the server holds (compressed and queryable) partitions
per common predicate families of 𝐺 , defined as follows:

Definition 2 (Predicate family). We define a predicate family
𝐹 (𝑠) wrt. to KG 𝐺 as the set of predicates associated with subject 𝑠 :

𝐹 (𝑠) = {𝑝 | ∃𝑜 ∈ 𝑜𝑏 𝑗 (𝐺) : (𝑠, 𝑝, 𝑜) ∈ 𝐺} (1)

We denote the set of families of a graph𝐺 as 𝐹 (𝐺) or 𝐹 for simplicity
whereby 𝐹 (𝐺) = {𝐹 (𝑥) |𝑥 ∈ 𝑠𝑢𝑏 𝑗 (𝐺)}.

Predicate families, also known as characteristic sets, were intro-
duced in [23] as an RDF query cardinality estimation method while
SKG uses families as a basis for inducing a graph partitioning of 𝐺 ,
with one partition 𝐺 𝑓 per 𝑓 ∈ 𝐹 (𝐺) [6].

We can interpret SKG as an LDF interface as follows:
• admissible patterns are defined by submitting a predicate
family 𝑓 ′ = {𝑝1, . . . 𝑝𝑘 }, which may be interpreted as a
pattern

⋃𝑘
𝑖=1{(?𝑆, 𝑝𝑖 , ?𝑃𝑖 )}, or resp., in SPARQL syntax, as

{?S 𝑝1 ?P1; 𝑝2 ?P2; . . . ; 𝑝𝑘 ?P𝑘.},
• Ω = {∅} is the only admissible binding set, i.e., SKG does
not consider binding restrictions,
• the selector function may be viewed as a variation of 𝑠 (·) as
follows: while the SKG server API returns a graph 𝐺 𝑓 per
family 𝑓 ∈ 𝐹 (𝐺) matching 𝑃 , the union of all these graphs
is defined as

𝑠SKG (𝐺, 𝑃,Ω) = {𝑡 ∈ 𝐺 | ∃𝑡 ′ ∈ 𝑠 (𝐺, 𝑃,Ω) : 𝑠𝑢𝑏 𝑗 (𝑡) = 𝑠𝑢𝑏 𝑗 (𝑡 ′)}
That is, while strictly speaking, indeed rather several par-
titions 𝐺 𝑓 are returned, 𝑠SKG (𝐺, 𝑃,Ω) =

⋃
𝑓 ⊇𝑓 ′ 𝐺 𝑓 defines

the union of all these partitions 𝐺 𝑓 ⊆ 𝐺 such that 𝑓 ′ ⊆ 𝑓
which are sent to the client,
• Φ: only 𝑛 = ∞ is admissible, i.e., no paging is supported since
the union of all relevant partitions is returned – unlike SPF
an over-estimation representing all subgraphs relevant to a
star-shaped subquery

An SKG client hence decomposes BGPs into families 𝑓 ′ of star-
shaped subqueries – on an abstract level, discarding variables or
concrete bindings – and fetches via this API the subgraphs𝐺 𝑓 (that
are available in compressed form on the server) matching 𝑓 ′; single
non-star triples in the BGP are retrieved via TPF and joins between
star-shaped subqueries, and single triple queries are then computed
on the client-side. Evaluations [6] show that this approach is highly
competitive for many concurrent clients due to its low server and
(due to partition compression also) network footprint. As forΦ, note
that it would not make sense to decompose family-based partitions
into chunks since chunking up the HDT-compressed partitions
would require decompression.

2.2 RDF HDT Compression

It is worthwhile to also explain the HDT [10] binary compression
format for RDF datasets that is used “under the hood” in all of
the previously mentioned interfaces, namely (br)TPF, SaGe, SKG,

and SPF, as well as in our novel approach presented in this paper.
HDT offers efficient search and retrieval over the compressed RDF
graphs without the need for decompression and offering query rel-
evant statistics directly in its metadata. The main compression idea
relies on ordering triples by 𝑆𝑃𝑂 , grouping repetitive RDF terms.
An HDT file could be viewed as a compressed, directly queryable
𝑆𝑃𝑂-ordered index. In addition, HDT provides a compressed binary
utility index built upon loading time covering 𝑂𝑃𝑆 𝑃𝑆𝑂 to achieve
a high performance for resolving any SPARQL triple pattern. TPF
and SPF rely on an HDT of the whole graph 𝐺 to evaluate triple
and star patterns on the server with a low computation footprint,
whereas SKG profits from the compression also lowering the net-
work footprint when shipping family partitions 𝐺 𝑓 .

3 MOTIVATING EXAMPLE

All thus far described KG APIs alone suffer from an imbalanced load
on either client-side (dumps, TPF, SKG) or server-side (SPARQL
endpoints, SaGe, SPF). In this paper, we therefore advocate that,
based on decomposing BGPs into star-shaped subqueries and char-
acteristics of these subqueries (e.g., selectivity and intermediate
result cardinality estimation), we can optimally distribute the query
processing load between client and server. Hence, given statistics
as well as information about the current server workload and the
client’s capabilities, we can pick the best suited KG API.

In particular, the factors that our cost model considers are server
load, client computing resources, and the number/size of interme-
diate results to be transferred over the network (in combination
with available bandwidth), since several sources [1, 6, 13, 21, 22]
identified these as important dimensions when accessing KGs.

To elaborate, let us consider query 𝑄 given in Figure 1a. All
triple patterns of𝑄 have quite large cardinalities, meaning that both
single pattern interfaces (TPF, brTPF) would need to send enormous
numbers of requests to the server and ship large intermediate results
to the client when processing the query.

For both star-based interfaces (SPF and SKG), the query would
be decomposed into two stars and a single triple pattern: 𝑠𝑝1 =

{𝑡𝑝1, 𝑡𝑝2, 𝑡𝑝3}, 𝑠𝑝2 = {𝑡𝑝4, 𝑡𝑝5}, and 𝑡𝑝6. 𝑠𝑝1 has 89,366 solution
mappings, and 𝑠𝑝2 has 600,349 solution mappings. Both, SKG and
SPF would estimate the result sizes of star patterns and, in essence,
order the query execution plan accordingly to (𝑠𝑝1, 𝑠𝑝2, 𝑡𝑝6), i.e.,
starting with 𝑠𝑝1. SKG ships a partition containing 1,628,572 stars
in total leading to excessive data transfer even though the partition
is HDT-compressed. SPF, on the other hand, only ships the 86,366
stars that actually match 𝑠𝑝1, resulting in less of a network over-
head and faster query processing. However, in order to process the
join between 𝑠𝑝1 and 𝑠𝑝2, SPF’s client join processor would batch
the 89,366 bindings into groups of 30 bindings each, sending one
request per batch, amounting to 2,979 requests. This overhead could
be conveniently mitigated by instead shipping the compressed par-
tition for 𝑠𝑝2 and joining on the client: this example illustrates
how a combination of SPF’s server-side star evaluation with SKGs
partition shipping could outperform either approach alone. More-
over, note that in case of a high server workload, the additional
network overhead for transferring the partition for 𝑠𝑝1 might still
be affordable, compared to server-side SPF processing of 𝑠𝑝1 using
the overloaded server.
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select ∗ where {
?album dbo: artist ? artist . # tp1 : 146,716 matches ( sp1 )

?album rdf : type dbo:Album . # tp2 : 147,917 matches ( sp1 )

?album dbo:releaseDate ?date . # tp3 : 212,290 matches ( sp1 )

? artist dbo:genre ?genre . # tp4 : 576,000 matches ( sp2 )

? artist foaf :name ?name . # tp5 : 4,146,579 matches ( sp2 )

?song dbo:writer ? artist . # tp6 : 200,969 matches

}

(a) Show artists’ albums, genres, and the songs they have written

tp1 tp2

tp3
tp4 tp5

tp6

SP1

SP2

SKG
SPF

(b) Query execution plan for (𝑠𝑝𝑆𝑃𝐹1 , 𝑠𝑝𝑆𝐾𝐺2 , 𝑡𝑝𝑆𝑃𝐹6 )

Figure 1: Example of processing a SPARQL query withWiseKG

4 WISEKG

In the spirit of the example presented in Section 3,WiseKG enables
to leverage (i) the characteristics of the star-shaped subqueries
as well as (ii) information on the currently available client and
server resources, to estimate the cost of processing each star-shaped
subquery on the client (using SKG) or on the server (using SPF), –
choosing the most efficient execution strategy dynamically.

4.1 Overview

WiseKG employs a dynamic cost model to determine an annotated
query plan: in order to denote query execution plans (cf. Section 2)
with particular interfaces to be used per subquery, we will use
superscripts 𝑆𝑃𝐹 and 𝑆𝐾𝐺 , i.e., for our example the annotated plan
Π = (𝑠𝑝𝑆𝑃𝐹1 , 𝑠𝑝𝑆𝐾𝐺2 , 𝑡𝑝𝑆𝑃𝐹6 ). In case of the example in Figure 1b
this would mean that 𝑠𝑝1 is evaluated via SPF on the server, 𝑠𝑝2 is
executed using SKG on the client, and the resulting bindings from
joining both are given as input Ω to a call of 𝑡𝑝6 executed again
using SPF on the server7.

Upon receiving a BGP 𝑃 from the client, the WiseKG server will
decompose it into star-shaped subqueries, and use its cost-model to
create an annotated query planΠ that is returned to the client, along
with a timestamp 𝜏 denoting plan expiry. The client then, in the
order specified by the server, executes Π using the APIs specified in
the plan annotations. In case the execution is not completed by 𝜏 ,
the client needs to request a new annotated plan, which may look
different – as mentioned before and illustrated in the example, the
choice of API per subquery taken by the server may depend on its
current load, as discussed in the following.

Formally, theWiseKG server API offers the following interface
calls access KG 𝐺 :
an SPF LDF API control 𝑆𝑃𝐹 (𝑃,Ω) returning 𝑠𝑆𝑃𝐹 (𝐺, 𝑃,Ω) ,
an SKG LDF API control 𝑆𝐾𝐺 (𝑃,Ω) returning 𝑠𝑆𝐾𝐺 (𝐺, 𝑃, ∅)8,
an execution plan interface 𝑃𝑙𝑎𝑛(𝑃) returning a 𝑝𝑎𝑖𝑟 (Π𝑃 , 𝜏). We
will use the notation 𝑐 (𝑃,Ω) to denote that a (star-shaped) sub-
pattern 𝑃 is executed by a control 𝑐 ∈ {𝑆𝑃𝐹, 𝑆𝐾𝐺} – in the spirit
of LDF, we expect also other (hypermedia) controls to be callable
in addition to 𝑆𝑃𝐹 and 𝑆𝐾𝐺 in the future. Further, in this paper
we assume that the call to 𝑐 (𝑃,Ω) on the client side is converted
7Note that for triple patterns, SPF is equivalent to brTPF so we can use the SPF interface
also for single triple patterns.
8Note that SKG does not allow to ship bindings, cf. Section 2.

to a set of bindings through a function 𝑒𝑣𝑎𝑙𝑐 (𝑃,Ω) = Ω ⊲⊳ [[𝑃]]𝐺 .
Note that, depending on whether the underlying selector function
of 𝑐 (𝑃,Ω) is already accepting bindings, directly returning Ω ⊲⊳

[[𝑃]]𝐺 (such as for SPF) or only returning a graph of which [[𝑃]]𝐺
can be computed and then joined with Ω on the client (such as for
SKG), 𝑒𝑣𝑎𝑙𝑐 incurs more or less work on the client side.
𝑃𝑙𝑎𝑛(𝑃) maps a BPG 𝑃 to an annotated plan Π𝑃 along with the

expiry timestamp 𝜏 = 𝜏C + 𝜄, where 𝜏C corresponds to the current
time, and 𝜄 is a fixed time quantum per query9. Π𝑃 is constructed
from S(𝑃) by (i) identifying the best join amongst stars based on
cardinality estimations and (ii) determining, based on factors such as
the current load on the server and the estimated network/processing
cost, the best interface (SPF or SKG) per subquery. Before we explain
(server and client) query processing in more detail (cf. Section 5),
we first present the server cost model, which is used to make this
latter choice.

4.2 Server-Side Cost Model

In this section, we presentWiseKG’s server costmodel used to deter-
mine the choice between client-side evaluation using SKG or server-
side evaluation using SPF. The cost model is inspired by the classic
𝑅∗ optimizer [18] from the field of distributed databases [18, 31].
In the 𝑅∗ model, the total time is the sum of four time components
(CPU processing, messaging, data transfer, and I/O) that can be
estimated for a query 𝑄 as:
𝑐𝑜𝑠𝑡 (𝑄) = processing +Messaging + data transfer + I/O

Following the R* model, we consider, in our client-server archi-
tecture, the following components to approximate the total time
consumed by client and server to process a star subquery: estimated
number of CPU instructions (#𝐶𝑃𝑈 ), estimated number of I/O op-
erations (#𝐼𝑂), as well as two communication cost components –
estimated number of requests (#𝑀) and estimated number of trans-
ferred bytes (#𝐵𝑌𝑇 ) over the network per query. WiseKG’s cost
model for a given star subquery is then defined as

𝑐𝑜𝑠𝑡 (𝑠𝑝) =𝑊𝐶𝑃𝑈 × (#𝐶𝑃𝑈 )︸               ︷︷               ︸
Processing

+𝑊𝑀𝑆𝐺 × (#𝑀)︸            ︷︷            ︸
Messaging

+𝑊𝐵𝑌𝑇 × (#𝐵𝑌𝑇 )︸               ︷︷               ︸
Data transfer

+𝑊𝐼𝑂 × (#𝐼𝑂)︸          ︷︷          ︸
I/O

(2)

9Somewhat similar to/inspired by SAGE’s[19] query suspension timeouts.
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where the weights𝑊𝐶𝑃𝑈 ,𝑊𝑀𝑆𝐺 ,𝑊𝐵𝑌𝑇 , and𝑊𝐼𝑂 help estimat-
ing the time required by the client and server hardware configu-
ration to perform a CPU instruction, the time required to send an
(HTTP) request message from a client to a server over the network,
the time required to transfer one byte from a server to a client over
the network, as well as the time required for a disk I/O operation.
It is important to note thatWiseKG’s server optimizer is tailored
to embed dynamic factors to reflect the current server load. These
weights are estimated as follows:
𝑊𝐶𝑃𝑈 : We estimate time per CPU instruction as the inverse of

the CPU’s IPS (Instructions per second) rate, damped by the current
CPU load in percent10:

𝑊𝐶𝑃𝑈 =
1

𝐼𝑃𝑆 × (100% −𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒 )
𝑊𝑀𝑆𝐺 : The average time to transmit an HTTP request from a

client to the server. In our experiments and network setup, similar to
SaGe’s experiments [19], we assume as a constant value of𝑊𝑀𝑆𝐺 =

50𝑚𝑠 for all clients. In a real world scenario, we would measure this
delay based on an initial HTTP request per client.
𝑊𝐵𝑌𝑇 :We estimate𝑊𝐵𝑌𝑇 by the conservativeminimumbetween

the available server bandwidth 𝑏𝑤𝑠𝑒𝑟𝑣 (which we estimate as the
difference between bandwidth of the server network card reduced
by the average data transfer over the network in the last 1 minute,
again checking every second) and the client bandwidth 𝑏𝑤𝑐𝑙𝑖𝑒𝑛𝑡 ,
whichwe estimate as 20𝑀𝑏/𝑠𝑒𝑐 in our setup, similar to [6]. This way,
𝑊𝐵𝑌𝑇 takes into account the current network usage of concurrent
clients. In our experiments, .

𝑊𝐵𝑌𝑇 =
1

𝑀𝑖𝑛(𝑏𝑤𝑐𝑙𝑖𝑒𝑛𝑡 , 𝑏𝑤𝑠𝑒𝑟𝑣)
𝑊𝐼𝑂 : We measure I/O in terms of loading chunks of 1MB from

disk, i.e., we estimate𝑊𝐼𝑂 as the time required to read 1MB to
the memory. InWiseKG, the I/O times differ per chosen API: for
SPF, a single HDT file of the entire graph 𝐺 is used and mapped
into memory while auxiliary bitmap indexes remain in memory
to help localize potential mapping solutions (using approx. 3% of
the entire HDT file altogether [10]). Thus, the I/O time accounts
for transferring non-cached blocks that might contain the mapping
solutions to memory. In SKG, the I/O time is due to the server
reading HDT partitions from disk in order to ship those to the client;
on the client side, we assume processing continues in memory, thus
not involving further I/O operations.

We note that our experiments have shown that in fact I/O is a
negligible factor in our setup; for both SPF and SKG (we perform
a respective experiment with a stress-testing workload described
in Section 6.1), we verified that the amount and difference in I/O
times in both approaches was dwarfed by the communication costs.
Therefore, we leave out this factor in our cost estimation model
(𝑊𝐼𝑂 = 0).

The final time cost estimates of client-side SKG evaluation based
on shipped partitions vs. server-side SPF evaluation of star patterns

10We estimate this current CPU load as the average percentage of𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒 in the
previous minute (checking every 1sec). Note that for our experiments we only compute
this CPU usage on the server side, i.e. for𝑊𝐶𝑃𝑈𝑠𝑒𝑟𝑣 , whereas for𝑊𝐶𝑃𝑈𝑐𝑙𝑖𝑒𝑛𝑡 we
assume𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒 = 0, i.e., full availability of client resources.

are given in Definition 3 and Definition 4. For a query BGP 𝑃 , these
costs are estimated for each star pattern 𝑠𝑝 ∈ S(𝑃).

Definition 3 (Cost of SKG Star Pattern Evaluation). Given
a star pattern 𝑠𝑝 ∈ S(𝑃) and a plan Π𝑃 , as well as the set of families
𝐹𝑠𝑝 = {𝑓 ∈ 𝐹 (𝐺) | 𝑓 ⊇ 𝑝𝑟𝑒𝑑 (𝑠𝑝)} relevant for 𝑠𝑝 in 𝐺 , the cost in
time of evaluating 𝑠𝑝 using SKG is estimated as follows:

𝑐𝑜𝑠𝑡𝑆𝐾𝐺 (𝑠𝑝,Π) =𝑊𝐶𝑃𝑈𝑐𝑙𝑖𝑒𝑛𝑡 × 𝑐𝑎𝑟𝑑 (𝑠𝑝,Π) × 𝑖𝑡︸              ︷︷              ︸
#CPU

+𝑊𝑀𝑆𝐺 × |𝐹𝑠𝑝 |︸︷︷︸
#M

+

𝑊𝐵𝑌𝑇 ×
( ∑
𝑓 ∈𝐹𝑠𝑝

𝑠𝑖𝑧𝑒 (𝑓 )︸          ︷︷          ︸
#BYT

)
+𝑊𝐼/𝑂 ×

( ∑
𝑓 ∈𝐹𝑠𝑝

𝑠𝑖𝑧𝑒 (𝑓 )︸          ︷︷          ︸
#IO

)

Definition 4 (Cost of SPF Star Pattern Evaluation). Given
𝑠𝑝 , Π𝑃 , and 𝐹𝑠𝑝 , the cost in time of evaluating 𝑠𝑝 using SPF is esti-
mated as follows:

𝑐𝑜𝑠𝑡𝑆𝑃𝐹 (𝑠𝑝,Π) =𝑊𝐶𝑃𝑈𝑠𝑒𝑟𝑣 × 𝑐𝑎𝑟𝑑 (𝑠𝑝,Π) × 𝑖𝑡︸              ︷︷              ︸
#CPU

+

𝑊𝑀𝑆𝐺 ×
𝑐𝑎𝑟𝑑 (𝑠𝑝,Π)

Φ(𝑛)︸         ︷︷         ︸
#M

+

𝑊𝐵𝑌𝑇 × 𝑐𝑎𝑟𝑑 (𝑠𝑝,Π) × 𝑏𝑡︸              ︷︷              ︸
#BYT

+𝑊𝐼𝑂 × 𝑠𝑖𝑧𝑒 (𝐺)︸  ︷︷  ︸
#IO

Definitions 3 and 4 use the following functions and variables:

• 𝑐𝑎𝑟𝑑 (𝑠𝑝,Π) returns an estimated result cardinality for eval-
uating star pattern 𝑠𝑝 using an estimation of the number of
bindings for previously evaluated star patterns in Π. This
estimate (based on statistics about the sizes of subgraphs per
characteristic set) is described in [23].
• 𝑠𝑖𝑧𝑒 (·) is either the size of an HDT file (plus index) for a
partition corresponding to a family 𝑓 ∈ 𝐹 (𝐺) or, for 𝑠𝑖𝑧𝑒 (𝐺)
the size of the HDT file for the entire graph 𝐺11.
• 𝑖𝑡 is the number of CPU instructions needed to process each
triple in the result set. In general, we rely onHDT algorithmic
costs which are sub-linear and close to constant for most
operations. [10]; we only measured one millisecond (or at
most a few milliseconds) in our experiments. We therefore
set this factor to 𝑖𝑡 = 1. Different IPS rates in the server and
client are considered in the different weights:𝑊𝐶𝑃𝑈𝑠𝑒𝑟𝑣 and
𝑊𝐶𝑃𝑈𝑐𝑙𝑖𝑒𝑛𝑡 .
• 𝑏𝑡 is the average number of bytes per triple in the result; we
estimate this factor by averaging the size of the triples in
each family partition.

5 QUERY PROCESSING

In this section, we detail how theWiseKG server and client work
together to process SPARQL queries. In particular, we describe how
the query processing is performed on the server side and on the
client side.

11Note that SPF relies on a single HDT for𝐺 whereas SKG only transfers the HDT
files corresponding to 𝐹𝑠𝑝 .
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5.1 Server-Side Query Processing

Since the server-side processing of star-shaped subqueries in SPF
and SKG APIs running on the server are explained in detail in [6]
and [1], we mainly focus on the creation of the annotated execution
plan in this section: when the WiseKG server receives a 𝑃𝑙𝑎𝑛(𝑃)
request for a BGP 𝑃 , it creates a query execution plan specific to
𝑃 , which it returns along with the expiry timestamp 𝜏 to the client
for execution; the resp. algorithm to compute 𝑃𝑙𝑎𝑛(𝑃) is shown in
Alg. 1.

Algorithm 1: Create an annotated query execution plan
Input: 𝑃 = {𝑡𝑝1, 𝑡𝑝2, . . . , 𝑡𝑝𝑛} // a BGP
Output: (Π𝑝 , 𝜏) // an annotated plan and its expiry time

1 function 𝑃𝑙𝑎𝑛(𝑃)
2 𝑆 ← S(𝑃)
3 Π𝑝 ← ()
4 while 𝑆 ≠ ∅ do
5 for 𝑠𝑝 ∈ 𝑆 do

6 𝑐𝑛𝑡𝑠𝑝 ← 𝑐𝑎𝑟𝑑 (𝑠𝑝,Π𝑝 )
7 if 𝑐𝑛𝑡𝑠𝑝 = 0 then
8 return ()
9 𝑠𝑝𝑖 ← 𝑠𝑝 where 𝑠𝑝 ∈ 𝑆 and 𝑐𝑛𝑡𝑠𝑝 ≤ 𝑐𝑛𝑡𝑠𝑝′ for all

𝑠𝑝 ′ ∈ 𝑆
10 if 𝑐𝑜𝑠𝑡𝑆𝑃𝐹 (𝑠𝑝𝑖 ,Π𝑃 ) ≤ 𝑐𝑜𝑠𝑡𝑆𝐾𝐺 (𝑠𝑝𝑖 ,Π𝑃 ) then
11 Π𝑃 ← 𝑎𝑝𝑝𝑒𝑛𝑑 (Π𝑃 , (𝑠𝑝𝑆𝑃𝐹𝑖

))
12 else

13 Π𝑃 ← 𝑎𝑝𝑝𝑒𝑛𝑑 (Π𝑃 , (𝑠𝑝𝑆𝐾𝐺𝑖
))

14 𝑆 ← 𝑆 \ {𝑠𝑝𝑖 }
15 𝜏 ← 𝜏C + 𝜄
16 return (Π𝑃 , 𝜏)

The first step is to decompose the query into star-shaped sub-
queries (line 2). To create the execution plan, we find the star-
subquery with the lowest cardinality estimation (line 5-8) and add
it to the plan; when we find a query with an empty result (e.g. in
case no matching family partition exists [6]), we can stop since the
final result will then also be empty. The star pattern with the lowest
cardinality estimation is selected first (line 9), thus overall in the
final plan, patterns are ordered by estimated cardinality.

Then, the estimated costs for SPF and SKG are compared in Line
10; depending on the cost models from Section 4.2, each subquery
is annotated with the resp. control for evaluating the star pattern
on the server, i.e., 𝑆𝑃𝐹 (line 11) or the client 𝑆𝐾𝐺 (line 13). Here,
the 𝑎𝑝𝑝𝑒𝑛𝑑 function just appends the annotated star pattern to the
end of the plan. When there are no more subqueries left in the
star decomposition, the algorithm returns the plan (line 16) after
computing the expiry timestamp (line 15).

For the query𝑄 shown in Figure 1a, this algorithm could compute
the execution plan in the join order visualized in Figure 1b (unless
the server load is too high, in which case 𝑆𝑃1 could also potentially
be suggested to be executed using SKG).

Finally, as a side note, we note that, based on the fact that not
all family partitions in SKG are necessarily materialized on the
server – SKG does not materialize HDT files over a certain partition
cardinality threshold (for details, cf. [6, Section 4.1]); in such cases

the concrete implementation of Alg. 1 defaults to SPF, i.e., server-
side evaluation of the resp. star pattern, independent of the cost.

5.2 Client-Side Query Processing

Processing queries on aWiseKG client relies on an approach similar
to the one presented in [1], which we adapt herein to accommodate
for client-side processing of HDT shipped family partitions. In the
following, we describe the basic ingredients that the client needs
to process full SPARQL queries: WiseKG is able to process full
SPARQL queries including operators such as UNION and OPTIONAL,
FILTER, etc.,12 which are all evaluated on the client-side. Herein,
we only focus on the BGP evaluation part.

The general approach for processing BGPs 𝑃 is as follows:
(1) Retrieve the query execution plan and time quantum for 𝑃

from the server by calling 𝑃𝑙𝑎𝑛(𝑃) = (Π𝑃 , 𝜏).
(2) For each star pattern 𝑠𝑝𝑐 ∈ Π𝑃 with control 𝑐 ∈ {𝑆𝑃𝐹, 𝑆𝐾𝐺}

in Π𝑃 and solution mappings from previously evaluated
operators Ω, iteratively do the following:

(a) If 𝜏 < 𝜏C , i.e., the plan has expired, the client requests a
new execution plan/expiry based on the remainder of 𝑃
that has not yet been processed.

(b) Otherwise we call the interface 𝑐 (𝑠𝑝,Ω) and convert it to
a set of bindings using 𝑒𝑣𝑎𝑙𝑐 (𝑠𝑝,Ω), which as mentioned
above, in the case of 𝑐 = 𝑆𝐾𝐺 involves client-side eval-
uation of the star-shaped pattern on the shipped HDT,
whereas SPF directly returns the result bindings.

The exact algorithm implementing these steps in a recursivemanner
is shown in Alg. 2.

Algorithm 2: Processing a Query Execution Plan
Input: Π = (𝑠𝑝𝑐11 , . . . , 𝑠𝑝

𝑐𝑛
𝑛 ) // an execution plan;

𝜏 // expiry timestamp;
Ω′ // a set of bindings

Output: Ω // set of solution bindings
1 function 𝑒𝑣𝑎𝑙𝑃𝑙𝑎𝑛(Π, 𝜏,Ω)
2 if 𝜏 < 𝜏C then

3 (Π, 𝜏) ← 𝑃𝑙𝑎𝑛(𝐵𝐺𝑃 (Π))
4 if Π = 𝑠𝑝𝑐 then

5 Ω ← 𝑒𝑣𝑎𝑙𝑐 (𝑠𝑝,Ω′)
6 else

7 Ω ← 𝑒𝑣𝑎𝑙𝑃𝑙𝑎𝑛((𝑠𝑝𝑐11 , . . . , 𝑠𝑝
𝑐𝑛−1
𝑛−1 ), 𝜏,Ω

′)
8 Ω ← 𝑒𝑣𝑎𝑙𝑃𝑙𝑎𝑛(𝑠𝑝𝑐𝑛𝑛 , 𝜏,Ω)
9 return Ω

Line 2 checks whether the plan has not yet expired; in that case,
the algorithm calls 𝑃𝑙𝑎𝑛(Π) to reevaluate the plan on the server (line
3)13. The way this is currently done can be understood as follows:
assuming the originally requested plan is (𝑠𝑝𝑐11 . . . 𝑠𝑝

𝑐𝑖
𝑖
. . . 𝑠𝑝

𝑐𝑛
𝑛 ) and

the client reaches 𝜏 at step 𝑖 . Then the client will restart calling
𝑃𝑙𝑎𝑛({𝑠𝑝𝑖 , . . . 𝑠𝑝𝑛}) receiving a new planΠ{𝑠𝑝𝑖 ,...𝑠𝑝𝑛 } uponwhich it
continues; obviously this could change the interface choices per star
for the remaining plan, based on the current server load situation.
12with the exception of GRAPH query patterns, since HDT does not support named
graphs.
13Here, 𝐵𝐺𝑃 (Π) denotes the corresponding (non-annotated) BGP for plan Π.
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Continuing on Alg. 2, in case the plan is associated with a single star
pattern 𝑠𝑝 (line 4), we call the control 𝑐 ∈ {𝑆𝑃𝐹, 𝑆𝐾𝐺} to retrieve
the output plan and obtain the output solution mappings (line 5).
Otherwise, the algorithm will make a recursive call for the left
subtree (line 8) the resulting bindings of which are handed over to
the call of the right subtree (line 9).

6 EXPERIMENTAL EVALUATION

In this section, we compare the performance of WiseKG with the
state of the art SPARQL query processing interfaces.

6.1 Experimental Setup

In this section, we describe the experimental setup, including the
systems we compare against, datasets, queries, and hardware and
software configurations.
Implementation details. We implemented both WiseKG client
and server in Java14 extending the TPF implementations15 so that
we ensure comparability and compatibility with the spectrum of
Linked Data Fragment (LDF) approaches including TPF, SPF, and
smart-KG. The WiseKG server relies on SPF star pattern frag-
ments for server-side processing of star-subqueries. Furthermore,
theWiseKG server adopts the family generator component from
smart-KG [6] to generate, manage, and store the HDT files of the
family-based partitions. In our server-side cost model, we depend
on a cross-platform operating system and hardware information
library for Java16 to retrieve system information about clients and
the server resources usage including network and CPU usage. The
WiseKG client implements a pipeline of nested iterators similar to
brTPF and SPF client implementations.
Configuration. To assess the performance of our system under
different loads, we perform experiments over eight configurations
with 2𝑖 clients (0 ≤ 𝑖 ≤ 7) issuing queries concurrently for each
configuration (up to 128 concurrent clients). Each concurrent client
executes one query at a time, i.e., at most 128 queries are executed
at the same time.
Datasets. We use three different sizes of the Waterloo SPARQL
Diversity Benchmark (WatDiv) [4] to test the scalability of our ap-
proach: 10M, 100M, and 1B triples. In addition to these, we also use
the real-world dataset DBpedia [16] (v.2015A). The characteristics
of the evaluated RDF graphs are described in Table 1.

Table 1: Characteristics of the used datasets

Dataset #triples #subjects #predicates #objects #families

watdiv10M 10,916,457 521,585 86 1,005,832 21,210
watdiv100M 108,997,714 5,212,385 86 9,753,266 37,392
watdiv1B 1,092,155,948 52,120,385 86 92,220,397 52,885
DBpedia 837,257,959 113,986,155 60,264 221,623,898 29,965

Queries.We consider three different query workloads for the Wat-
Div datasets: (i) a basic testing workload named watdiv-btt that
consists of queries obtained from WatDiv basic testing templates17.
Each client has a set of 20 queries including star queries (S), linear
queries (L), snowflake queries (F), and complex queries (C); and
14https://github.com/WiseKG/WiseKG-Java
15https://github.com/LinkedDataFragments/Server.java
16https://github.com/oshi/oshi
17https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

(ii) a diverse stress testing workload named watdiv-sts that con-
sists of queries obtained from the WatDiv stress-testing suite[4].
Each client has a set of 154 non-overlapping queries. In addition to
these workloads, we randomly selected 16 queries from a real-world
LSQ query log [27]; plus, we included 12 queries used to evaluate
smart-KG [6].
Compared Systems. To test the effectiveness of dynamically shift-
ing star-subquery processing between client-side and server-side
based on the status of server-side resources disregarding the cost
model defined in Section 4.2, we implemented a version of WiseKG
namedWiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 that relies on more straightforward heuris-
tics. Initially,WiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 executes all star subqueries on the
server side up to a predefined CPU usage threshold 𝜎 . When the
threshold is reached, WiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 produces an execution plan
exclusively based on shipping family partitions. In addition, we
evaluate WiseKG𝑐𝑜𝑠𝑡 , our main contribution, which is a version of
WiseKG that relies on the cost model described in Section 4.2. Note
that we use the recommended versions of both server and client for
all the evaluated systems including Star Pattern Fragment (SPF) [1],
smart-KG [6], SaGe [19], and Triple Pattern Fragments (TPF) [30].
Hardware configuration.We ran all 128 clients concurrently on a
virtual machine with 128 2.5GHz vCPU cores, 64KB L1 cache, 512KB
L2 cache, 8192KB L3 cache, and 2TB main memory. To ensure an
even distribution of the resources between the clients, we limited
each client (for all approaches) to run with a single vCPU core
and 15GB main memory. WiseKG and all the compared system
servers were run on the same server with 32 3GHz vCPU cores,
64KB L1 cache, 4096KB L2 cache, 16384KB L3 cache, and 128GB
main memory. Clients and servers are located on the same 1 GBit
network. In order to emulate a more realistic bandwidth scenario,
we limited the network speed of each client to 20 MBit/sec.
Evaluation metrics.

• Timeouts: number of queries that exceed the timeout.
• Workload Completion Time: the total time required by a
client to complete a workload.
• Query Execution Time: the average time it takes to com-
plete a query.
• Server CPU load: the average percentage of server CPU
usage during the execution of a query workload.
• Number of Requests made to the Server: the number of
requests a client sends to the server.
• Number of Transferred Bytes: the number of bytes trans-
ferred between server and client, i.e., the sum of both direc-
tions.

Software configuration. Following the experiments performed
in [1, 6, 19], we used a timeout of 300 seconds, i.e., 5 minutes, for all
approaches. That is, after 5minutes we suspend the query execution.
The page size Φ(𝑛) for TPF, SPF, and WiseKG was set to 𝑛 = 100
(as in [1, 30]) and the maximum number of bindings attached to a
request for SPF and WiseKG was set to |Ω | = 30 as it was in [1].
In order to assess our approach against the others using as similar
as possible configurations, we set the time quantum 𝜄 to the same
value as the overall timeout for all systems, i.e., 5 minutes.18

18In our current setup and evaluation covering widely used benchmarks in the area,
the expiry timestamp was hardly reached. While we already significantly outperform
all state-of-existing approaches, we still deem the addition of a plan expiry needed
both conceptually (as the system resources change dynamically over time and our

https://github.com/WiseKG/WiseKG-Java
https://github.com/LinkedDataFragments/Server.java
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(a) Number of Timeouts (b) Avg. Workload Time (c) Queries per minute

Figure 2: Number of timeouts, average workload time, and throughput for 128 clients over watdiv10M, watdiv100M,
and watdiv1B on watdiv-sts

6.2 Experimental Results

Due to space restrictions, this section focuses on the most important
results. All results, incl. additional experiments, details on the im-
plementation and configurations used in the experiments (datasets
and queries) are available online19.
System Performance Evaluation. In this part of the evaluation,
we focus on analyzing the behavior of the compared systems in
the scenario of increasing KG size with the highest number of
concurrent clients (128 clients) using the watdiv-stsworkload. As
shown in Figure 2,WiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 , the vanilla version ofWiseKG,
performs significantly better than the state-of-the-art systems in
terms of performance and scalability, not to mentionWiseKG𝑐𝑜𝑠𝑡
(just WiseKG hereafter) has even surpassedWiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 .

Figure 2a shows that WiseKG produces no timeouts over the
watdiv10M and watdiv100M datasets for 128 concurrent clients.
Moreover, even in the case of watdiv1B, WiseKG only incurs 2%
timeouts of the total workload queries. In contrast, none of the
compared systems was able to process all queries with a 5-minute
timeout, except SPF and SaGe on the watdiv10M dataset. When
queries are executed over the watdiv1B dataset, the percentages
of timeouts reach 13% and 21% for smart-KG and SPF, respectively.
For SaGe and TPF, the percentages of timeouts increase up to 55%.
These results confirm the superior scalability of WiseKG compared
to state-of-the-art systems. These experiments show that even for
a high number of clients, WiseKG is able to handle large scale KGs.

Figure 2b shows that the average workload completion time in-
cluding queries that timed out.WiseKG is up to 4 times faster than
SPF and smart-KG, and up to an order of magnitude faster than
SaGe and TPF over watdiv1B with a load of 128 concurrent clients.
In addition, Figure 2b also shows that SPF and smart-KG have
comparable average workload time. smart-KG performs slightly
better for watdiv100M and watdiv1B datasets. This is not surpris-
ing since they similarly rely on star decomposition; SPF executes
the star subqueries on the server side while smart-KG ships the rel-
evant partitions for the subqueries and executes them on the client.
Compared to SPF and smart-KG, WiseKG provides a significant
performance improvement as a result of the proposed cost model

model needs to consider the current “promises” it made to clients) and useful for future
workloads on larger knowledge graph.
19https://github.com/WiseKG/WiseKG-Experiments

that optimizes query processing by leveraging the subqueries’ cardi-
nality estimation as well as available client and server resources to
determine an efficient execution plan. To provide a comprehensive
evaluation, we also include TPF and SaGe in our experiments. As
shown in Figure 2, our experiments confirm a previous study [6]
that SaGe performs far better than TPF for small datasets. However,
when dataset size increases and the number of concurrent clients
is high, the difference between TPF and SaGe becomes less visible.
Note that we did not include a SPARQL endpoint (e.g Virtuoso) in
our experiments, since several previous studies [1, 6, 19, 30] have
already shown that SPARQL endpoints are not able to scale well
with an increasing number of clients.

We compare the performance of WiseKG to state-of-the-art
interfaces considering real-world queries on DBpedia. Figure 3
presents the execution times of these 28 queries for all systems.
The results confirm that WiseKG significantly outperforms the
compared systems for the real-world queries. Figure 3 shows that
TPF is the slowest or the second to slowest in all queries. On the one
hand, smart-KG suffers from excessive delays in queries that require
non-materialized partitions such as Q2, Q4, Q8, Q12, Q15, Q19, Q21
and Q25 since, in this case, smart-KG depends on TPF in addition to
queries with high selectivity such as Q6, Q16, Q20, and Q26 as it is
more resource-efficient to process on the server-side. On the other
hand, SPF has a robust performance in most of the queries due to its
efficient server-side star pattern execution, except the queries with
low selectivity such as Q24 and Q28 due to the excessive transfer
of intermediate results. Moreover, SaGe has worse performance
than WiseKG for the less selective queries with large intermediate
results, such as Q7 and Q28, due to these queries putting more load
on the server and incurring more requests to the server. The queries
where SaGe has slightly better performance than WiseKG, such as
Q2 and Q4, are generally queries where the overhead of computing
the execution plan for WiseKG is a considerable part of the overall
execution time (i.e, very simple queries).

Finally,WiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 is faster thanWiseKG for the queries
with execution time less than 0.1 seconds. This is because WiseKG
has the overhead of computing the best query plan.
Performance evaluation on different query shapes. In this
part of the evaluation, we analyze the effect of the query shapes
on the performance of the systems. We use queries of 4 different
shapes including linear (L), star (S), snowflake (F), and complex

https://github.com/WiseKG/WiseKG-Experiments
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Figure 3: Execution time (in seconds) for 28 diverse queries over the dbpedia dataset.

(a) L1-L5 (b) S1-S7 (c) F1-F5 (d) C1-C3

Figure 4: Avg. execution time per client over watdiv100M for the watdiv-btt workload.

(C) queries. These queries are part of the watdiv-btt workload
and executed against watdiv100M. The watdiv-btt queries were
executed in a different (random) order on each client and the results
were recorded as the overall execution time per query shape aver-
aged across all clients. Figure 4 shows the average query execution
time for each shape.

In compliance with the system performance analysis,WiseKG
outperforms all state-of-the-art systems for all different query
shapes. For the L-workload, all systems have a similarly efficient
performance since this workload includes the simplest queries with
a small diameter. As shown in Fig. 4b, SPF provides an excellent
performance for S-workload – as expected since it is optimized for
star queries with high selectivity. On the other hand, smart-KG
performs worse than SPF since it sends an entire partition with
unnecessary intermediate results for such queries. In general, SaGe
has an outstanding performance for all query shapes, especially for
the F-workload as shown in Fig. 4c. This is due to the fact that the
watdiv-btt workload includes only 20 queries per client (i.e low
query arrival rate) and we use a medium-size watdiv-100M dataset
for this experiment.

Fig. 4d shows that the behavior of the compared systems dra-
matically changes for the C-workload. For instance,WiseKG sig-
nificantly outperforms state-of-the-art interfaces, even SaGe in the
single client configuration. SaGe starts ahead of smart-KG up to 16
clients, then smart-KG performs better with higher numbers of con-
current clients. SPF suffers excessive delays in C1 since the query
includes 3 stars that have intermediate results with high cardinal-
ities. For query C2, SaGe outperforms all the compared systems.
In contrast, smart-KG and TPF are significantly worse (both time
out) than SPF due to SPF’s better handling of triple patterns with
large cardinalities by shipping bindings along with star-shaped

subquery requests. Interestingly, althoughWiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 times
out in C2,WiseKG was able to efficiently perform the query with
a slightly higher average time compared to SaGe. This is due to
the accurate estimations of the cost model. Finally, for C3, though
SPF and smart-KG are optimized for star queries, e.g., C3 is a single
unbounded star,WiseKG is up to three times faster with 128 clients.
Impact of cost model components. We performed an experi-
ment with several different configurations of the cost model over
watdiv100M on the watdiv-sts workload in order to evaluate the
impact of the cost model components on WiseKG query perfor-
mance and resource consumption. To measure the impact of the
cost model components, we configured three different versions
ofWiseKG including data transfer component only (𝐶𝑜𝑠𝑡𝐷 ), data
transfer and messaging components (𝐶𝑜𝑠𝑡𝑀𝐷 ), and finally, a ver-
sion with processing, messaging, and data transfer components
(𝐶𝑜𝑠𝑡𝑃𝑀𝐷 ). For this experiment, we used WiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 as base-
line. Figure 5a shows that for the configuration with 128 clients
𝐶𝑜𝑠𝑡𝑃𝑀𝐷 improves the average workload completion time (14 min)
compared to𝐶𝑜𝑠𝑡𝐷 and𝐶𝑜𝑠𝑡𝑀𝐷 (19𝑚𝑖𝑛 and 16𝑚𝑖𝑛, respectively). In
addition, Figures 5b and 5c show that𝐶𝑜𝑠𝑡𝑃𝑀𝐷 requires on average
less CPU usage and number of requests than 𝐶𝑜𝑠𝑡𝐷 and 𝐶𝑜𝑠𝑡𝑀𝐷 .
This is due to the fact that the 𝐶𝑜𝑠𝑡𝑃𝑀𝐷 configuration includes the
processing component which significantly contributes to lowering
the CPU load on the server. Although 𝐶𝑜𝑠𝑡𝐷 has the lowest trans-
ferred data compared to the rest of the configurations,𝐶𝑜𝑠𝑡𝐷 is the
slowest configuration. The reason for this behavior is that it does not
take into account the HTTP request latency, which is an important
factor to determine the incurred latency especially, in subqueries
that require high numbers of result pages. It is important to note
that all the configurations remain faster thanWiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 , and



WiseKG: Balanced Access to Web Knowledge Graphs WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) Avg. Workload Time (b) CPU Usage (c) Avg. requests per query (d) Avg. data transfer per query

Figure 5: Impact of the cost model components on the performance and resources consumption over watdiv100M

(a) Number of requests to the server for 128

clients over watdiv10M, watdiv100M, and

watdiv1B (log).

(b) Number of transferred bytes for 128

clients over watdiv10M, watdiv100M, and

watdiv1B (log).

(c) Avg. Server CPU Usage (in percent-

age) for increasing numbers of clients over

watdiv1B.

Figure 6: Number of requests to the server and number of transferred bytes for 128 clients over watdiv10M, watdiv100M, and
watdiv1B, and CPU load for increasing numbers of clients over watdiv1B on the watdiv-sts workload

sinceWiseKGℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 is faster than all the state-of-the-art systems
(Figure 2), so are all the configurations.

Moreover, to evaluate the impact of using characteristic set [23]
as a cardinality estimation method on the cost model components,
we replaced the cardinality estimation function in the WiseKG
configurations described earlier with the true cardinality, creating
the configurations 𝐸𝑥𝑎𝑐𝑡𝐷 , 𝐸𝑥𝑎𝑐𝑡𝐷𝐶 , and 𝐸𝑥𝑎𝑐𝑡𝑃𝑀𝐷 , respectively.
Figures 5b, 5c, and 5d show that 𝐸𝑥𝑎𝑐𝑡𝐷 and 𝐸𝑥𝑎𝑐𝑡𝐷𝐶 provide faster
performance and better resource utilization compared to their peers
with cardinality estimation 𝐶𝑜𝑠𝑡𝐷 and 𝐶𝑜𝑠𝑡𝑃𝑀𝐷 . Figure 5a shows
that the configurations with the true cardinality have a comparable
workload execution time (≈ 14𝑚𝑖𝑛). This performance is similar to
the performance of 𝐶𝑜𝑠𝑡𝑃𝑀𝐷 even though 𝐸𝑥𝑎𝑐𝑡𝑃𝑀𝐷 has a lower
resource consumption.

Finally, our experimental results show that relying on character-
istic sets as a cardinality estimation method provides a compara-
ble performance to the configurations with the true cardinality –
demonstrating a very subtle impact of the cardinalitymiss-estimates
on the overall performance of WiseKG. We plan to investigate di-
verse cardinality estimators as future work in order to explore the
impact of different cardinality estimation techniques onWiseKG
query execution time [17, 24].
Resource consumption. In this part of the evaluation, we focus on
the server resource usage including network and CPU consumption.

We report two main metrics to demonstrate the network traffic:
the number of requests sent to the server (NRS) and the number
of transferred bytes between client and server (NTB). Figures 6a
and 6b show the distribution of the number of requests to the server

per query as well as the distribution of the number of transferred
bytes per query, with 128 concurrent clients on increasing KG
sizes (watdiv10M, watdiv100M, and watdiv1B) for the watdiv-sts
workload. As expected, TPF incurs the highest number of requests
and the data transfer leading to a substantial increase in network
load. Even though smart-KG relies on TPF to execute singular triple
patterns and star patterns with no materialized partition, smart-
KG significantly reduces the number of requests compared to TPF
since it only sends a single request per star pattern. Figure 6a also
demonstrates that WiseKG requires the lowest average number
of requests among all systems due to three main reasons: first,
WiseKG potentially reduces the number of requests required based
on the communication component in the cost model which can be
observed in the difference between the number of requests 𝐶𝑜𝑠𝑡𝐷
and 𝐶𝑜𝑠𝑡𝐷𝐶 as shown in Figure 5c; second, WiseKG, in contrast
to smart-KG, ships bindings along with the triple pattern requests
(as presented in brTPF [12] that requires fewer requests than TPF);
third,WiseKG has an advantage over SPF to require less requests
in case of star patterns with low selectivity. Figure 6b shows that
SaGe incurs the least data transfer among all compared systems
since SaGe is essentially a SPARQL endpoint with a preemption
model that only transfers the final results. As expected, WiseKG
incurs less data transfer than TPF, smart-KG, and SPF. To be precise,
WiseKG transfers on average 5.5𝑀𝐵 per query while SPF and smart-
KG transfer 7𝑀𝐵 and 13𝑀𝐵 over watdiv100M dataset. WiseKG
demands on average less intermediate results than SPF and smart-
KG thanks to the cardinality estimation aware cost model.
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Figure 6c presents the average server CPU usage per system
when the watdiv-sts workload is executed over the watdiv100M
dataset. SPF and SaGe consume more CPU on the server side. This
is expected since SPF processes star pattern queries on the server
side and SaGe utilizes a SPARQL endpoint that does all the work
on the server side. As one can see from Figure 6c, the CPU usage
of these two interfaces approach the CPU processing capabilities
when the concurrent number of clients is set to 128. In contrast,
CPU consumption of smart-KG and TPF remain almost constant
and quite low; under 20% and 30%, respectively. This low consump-
tion is inline with restricted capabilities of these servers: partition
shipping in case of smart-KG and triple pattern lookup in case of
TPF. Figure 6c shows thatWiseKG’s CPU usage is almost in the mid-
dle between SPF and smart-KG, where it gradually increases up to
60% in the case of 128 concurrent clients, which enablesWiseKG to
serve more queries given the current server capabilities (Figure 2a).

7 CONCLUSIONS AND FUTUREWORK

We introducedWiseKG, a querying interface to efficiently access
Web Knowledge Graphs. We propose an efficient query process-
ing approach under high query loads by balancing SPARQL query
execution load between servers and clients. To this end, we have
combined two Linked Data Fragments APIs (SPF and smart-KG)
that enable server-side and client-side processing of star-shaped
sub-patterns. Our dynamic cost model picks the best suited API per
sub-query based on the current server load, client capabilities, and
estimation of necessary data transfer between client and server (for
intermediate query results), and network bandwidth. Our experi-
ments show thatWiseKG significantly outperforms state-of-the-art
stand-alone LDF interfaces on high demanding workloads, with
increasing numbers of concurrent clients, with increasing KG sizes,
and on different query shapes. We show that WiseKG’s cost model
improves average workload completion (reducing the number of
timeouts) while also reducing resource consumption (including less
CPU usage and network traffic) compared to existing interfaces.

In our future work, we plan to evaluate in more detail the influ-
ence of different hardware setups and mixes of clients with differing
computational resources. We also, respectively, plan to expand our
query optimizer to consider further aspects, such as additional
hardware parameters, parallelism, network delays, etc. as well as
to provide optimization support for additional types of queries incl.
for instance aggregation [14, 15]. Moreover, we plan to extend our
implementation, which is currently implemented as a standalone
setup, into a framework that flexibly allows to integrate different
LDF APIs [20] and also other cost models. The recently introduced
Comunica [7, 28] platform could serve as a starting point for integra-
tion. While our implementation covers also full SPARQL patterns
(incl. UNION, OPTIONAL, FILTER, etc.) computed on the client
side, the current approach is not dealing with multiple (named)
graphs and GRAPH queries. Looking into extensions of HDT to-
wards handling quads [11] could address this current limitation.
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