WiseKG: Balanced Access to Web Knowledge Graphs

Amr Azzam® Christian Aebeloe” Gabriela Montoya
Vienna Univ. of Aalborg University Aalborg University
Economics & Business caebel@cs.aau.dk gmontoya@cs.aau.dk
amr.azzam@wu.ac.at
Ilkcan Keles Axel Polleres Katja Hose
Aalborg University Vienna Univ. of Aalborg University
Turkcell Economics & Business khose@cs.aau.dk

ilkcan.keles@turkcell.com.tr

Complexity Science Hub Vienna

axel.polleres@wu.ac.at

ABSTRACT

SPARQL query services that balance processing between clients and
servers become more and more essential to handle the increasing
load for open and decentralized knowledge graphs on the Web. To
this end, Linked Data Fragments (LDF) have introduced a founda-
tional framework that has sparked research exploring a spectrum
of potential Web querying interfaces in between server-side query
processing via SPARQL endpoints and client-side query processing
of data dumps. Current proposals in between typically suffer from
imbalanced load on either the client or the server. In this paper, to
the best of our knowledge, we present the first work that combines
both client-side and server-side query optimization techniques in
a truly dynamic fashion: we introduce WisekG, a system that em-
ploys a cost model that dynamically delegates the load between
servers and clients by combining client-side processing of shipped
partitions with efficient server-side processing of star-shaped sub-
queries, based on current server workload and client capabilities.
Our experiments show that WiseKG significantly outperforms state-
of-the-art solutions in terms of average total query execution time
per client, while at the same time decreasing network traffic and
increasing server-side availability.

ACM Reference Format:

Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles, Axel
Polleres, and Katja Hose. 2021. WiseKG: Balanced Access to Web Knowl-
edge Graphs. In Proceedings of the Web Conference 2021 (WWW °21), April
19-23, 2021 ,Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3442381.3449911

1 INTRODUCTION

The Semantic Web has over the past two decades seen a steady in-
crease in the amount of data published as Linked Open Data (LOD),
forming a Web of interconnected Knowledge Graphs (KG) [8]. Such

“Both authors contributed equally to this research.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449911

KGs are accessible either via public SPARQL endpoints, download-
able data dumps, KG partitions, or dereferenceable URIs. The con-
tinued work on Linked Data is fueled by the prospects of such
interconnected KGs finally making the vision of an interlinked Web
of Data a reality, and at the same time providing scalable query
processing to its users. However, as provisioning and maintaining
access to KGs is still a huge burden for data publishers [2, 26, 30],
low availability of public SPARQL endpoints [5, 29] remains one of
the greatest obstacles to this vision.

In order to tackle this bottleneck, various recent proposals em-
phasize decentralization as a means to lift this burden off the data
providers. On one hand, several approaches have focused on the de-
centralization of the data [2, 3, 9]. While these approaches increase
the availability of the data, their query processing capabilities are
significantly less efficient than approaches with a powerful central-
ized server or approaches that ship full data dumps to powerful
clients for local processing. On the other hand, several recent stud-
ies [1, 6, 12, 19, 20] have focused on the decentralization of the
query processing tasks. These approaches divide the processing
burden between servers and clients. Even though the servers might
be powerful, they will struggle with highly concurrent query loads.
Therefore, the clients, which might have free resources, will take
some of the query processing tasks for themselves rather than
waiting for an overloaded server.

To this end, Triple Pattern Fragments (TPF) [30] reduces the
server load significantly by processing joins on the client-side while
only processing individual triple patterns on the server. To avoid
processing non-selective triple patterns on the server, the client
locally processes joins using previously obtained bindings in the
request (one binding at a time), potentially leading to smaller inter-
mediate results. Yet, this kind of processing potentially leads to a
large number of server requests during query processing, creating
a significant overhead on the network traffic. As opposed to just
providing triple pattern execution on the server and full join capa-
bilities on the client, two approaches have recently been proposed
to optimize SPARQL query processing. Star Pattern Fragments
(SPF) [1] exploits server-side evaluation of star-shaped subqueries,
while smart-KG [6] exploits client-side evaluation of star-shaped
subqueries by retrieving compressed KG partitions from the server.
However, the potential benefit of being able to dynamically switch
between strategies based on the current server load, caching, etc.,
remains mostly unexploited by the current state of the art.

https://doi.org/10.1145/3442381.3449911
https://doi.org/10.1145/3442381.3449911

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Hence, in this paper, we present WIseKG, a novel approach that
combines the strengths of the state of the art and further advances
them by finding a novel balance between server and client load.
Based on the current load on the server, WiseKG decides whether
subqueries should be processed on the client or on the server. The
underlying cost model considers parameters such as CPU load,
estimated network transfer time, and currently available resources
at the client to determine where to process a particular part of
the query. By applying this cost model, servers can dynamically
share the query processing tasks with the clients, making better use
of server resources and retaining high performance even during
high load. At the same time, they achieve significantly lower query
processing times and, by processing subqueries locally on the server,
avoid unnecessary data shipping during periods with an overall
low query processing load.

In summary, we make the following contributions:

o We present WIsEKG, a novel system that dynamically shifts
the query processing load between client and server.

o WiseKG employs a cost model to minimize the total time
consumed by client-side and server-side components while
considering the current load on the server and the client.

o Our extensive evaluation using demanding query workloads
on real-world KGs as well as synthetic KGs up to 1 billion
triples shows that Wi1seKG significantly outperforms the
state of the art.

The remaining sections are organized as follows. We cover back-
ground in Section 2. Section 3 provides a motivating example. Sec-
tion 4 gives an overview of WIseKG, followed by a presentation
of the server-side cost model. Section 5 details SPARQL query pro-
cessing on the client- and server-side. Section 6 then presents an
empirical evaluation of Wi1seKG. Last, we conclude the paper and
provide an outlook on future work in Section 7.

2 BACKGROUND

RDF and SPARQL. We assume the readers’ familiarity with base
technologies such as RDF and SPARQL, from which we borrow
standard notation such as RDF Turtle! or algebra operators [25]; by
subj(t), pred(t), obj(t) we to refer to the components of a single
RDF triple t € G, such that these components are RDF terms (i.e.
URIs/IRIs, blank nodes, and literals). An RDF knowledge graph (KG)
G is a set of such triples, where subj(G), pred(G), obj(G) denote
subjects, predicates, and objects in G.

RDF KGs can be queried using the query language SPARQL,
which relies on matching graph patterns for easy access to RDF
stores. The fundamental graph pattern is a triple pattern tp, which
is an RDF triple that permits variables from an infinite set V of
variables, disjoint with the previously mentioned RDF terms.

A Basic Graph Pattern (BGP)is a set of triple patterns {tp1 ... tpn}
that can be viewed as a conjunctive query; note that while semanti-
cally, order is not relevant, we use sequences (...) instead of sets
{...} in this paper to indicate execution (left-linear) order in a query
plan, i.e, for instance (¢p1,..., tpy) stands for a left-linear query
execution plan (... (tp1 »< tpg) »< ...) > tp,), whereas non-left-
linear plans will be denoted by respective explicit parentheses.

Uhttp://www.w3.0rg/TR/2014/REC-turtle- 20140225/

Azzam and Aebeloe, et al.

For any pattern P, we denote by var(P) its variables. The so-
lutions (or, answers, resp.) of a (query) pattern P over a graph
G, denoted [[P]]g, are given as sets Q of bindings, i.e., mappings
of the form, y : var(P) — R to the set R of RDF terms, such
that G | p(P), ie. p(P) forms a (sub)graph entailed by G. Two
mappings 1, 2 are called compatible, denoted as ||z if for any
v € dom(u1) Ndom(p2), p1(v) = p2(v), cf. [25] for details.

A star pattern sp = {tp;...tpx} is a BGP such that subj(tp;) =
subj(tpj) forall i, j € {1,...,k}, ie., the subjects of all triple pat-
terns are the same. We refer to k as the star-size of sp.

Note that each complex BGP P can be decomposed into a set of
star patterns S(P), called the (star-)decomposition of P as follows:

S(P) ={{t € P|subj(t) =s}|sesubj(P)}

Along the above-mentioned notation for query plans as se-
quences of patterns being interpreted as left-linear query plans,
we will analogously write query plans that evaluate patterns per
stars as permutations of S(P), e.g., the query plan shown in Fig. 1b
could be written as (sp1, sp2, tps), indicating an execution plan at
the level of joining star patterns as follows: ((sp1 >< sp2) >< tp).

The primary focus of this paper is on evaluating BGPs as the
fundamental retrieval functionality of SPARQL. However, more
complex patterns, such as Union, Optional, and Filters, are cov-
ered by our proposed system, which implements the full SPARQL
specification — for a more complete formalization we refer to [25].

2.1 Existing KG Interfaces

In this section, we define query interfaces for KGs following the
principles set by Linked Data Fragments (LDF) [30]. In essence,
LDF characterizes APIs that allow access to fragments of a KG G
through (specific to a particular instantiation of LDF) a limited
range of allowed query patterns that a client can submit to the
server; often with the goal to limit server-side computation cost
and to enable effective HTTP caching, while leaving evaluations of
more complex patterns to the client. Variations of LDF also offer
additional controls to ship intermediate bindings alongside with
queries or to control the “chunk size” of results through specifying
page sizes into which the results should be batched. Note that in
line with LDF [30] we also assume G to be blank node-free.

In this paper, we omit details on LDF, such as metadata that is
sent along with query results and hypermedia controls. However,
we borrow from the original specification [30] and align formal
definitions and notations to uniformly present different APIs:

DEFINITION 1 (ADAPTED FROM [30]). An LDF API of a KG G
accessible at an endpoint URIu? is a tuple f = (s, ®) with

e a selector function s(G, P, Q) that defines how a fragment T C
G, or alternatively a set of fragments® T* C 26 is constructed
upon calls to the APL

e a paging mechanism ®(n, 1, 0) parameterized by n,1,0 € Ny
denoting maximum page size, limit, and offset.

%Via this base URI the API can be accessed and queried as well as additional controls
can be submitted.

3We note that this is a generalization from the original LDF proposal, which - tech-
nically - could be realized, for instance, by returning RDF datasets in the sense of
SPARQL (consisting of a default graph and optionally a set of (named) graphs), or resp.
a set of quads instead of triples.

http://www.w3.org/TR/2014/REC-turtle-20140225/

WiseKG: Balanced Access to Web Knowledge Graphs

The selector function s is parameterized by a graph G, pattern P,
and a set of bindings Q*, where we define two variants, s(-) and
s*(+), which differ essentially in terms of returning either a single
graph or one subgraph per solution p € [[P]]g:

s(G.P,Q) ={t € pu(P) | Fp € [[Pllg : G E p(P)AFp" € Q= p'lIp)}

s%(G,P,Q) ={u(P) | Fp e [[Pllg : G E p(P)A(Fp" € Q: 1|}

As we will see, all LDF APIs discussed in this section can indeed
be expressed in terms of one of these two default selector functions.

The general paging mechanism ® we use in this paper shall en-
able returning the result in batches, e.g., for LDF use cases where T
(or, resp., T'*) would be very large or retrieving the whole result is
not required or possible. Hence, we assume that ®(n, [, 0) simply de-
fines a mechanism to divide T into partitions (or pages) {I1, ..., I},
where for each page I it is guaranteed that |T;| < n (i.e., I} does
not contain more than n triples), and [and o, resp. would allow to
request the pages from T}, to T,,,;°. We assume I to default to [= oo,
o to default to 0 = 1, and finally n = oo signifying that whole graph
I' should be returned.

In the following, we will explain different approaches on the

LDF framework’s spectrum, wrt. implications on server availability
under high numbers of concurrent clients:
Data Dumps offer the clients simple access to the entire KG. In
order to perform a SPARQL query, the clients have to download the
whole KG and run a local SPARQL engine themselves. This can be
a very beneficial solution for many clients with sufficient resources
but puts high processing cost on the client, plus the need for high
amounts of data transfers whenever the KG evolves/changes. Data
dumps can be characterized in terms of LDF by

o the selector function s(+) as defined above,
o the only admissible form of P and Q are P = {(?s, ?p, ?0)} and
Q = {0}, ie., s(G, P, Q) boils down to the identity function,
o @: the only admissible parameter for ®(n, [, 0) is (o0, 1,1) =
{Ii} =A{T}
SPARQL endpoints provide efficient querying on the server side;
the query shipped to the server is typically evaluated in an efficient
triple store such as Virtuoso, Blazegraph, and Jena, etc., without
work for the clients, who receive the ready end result. This can be
characterized in terms of LDF as follows:

o while SPARQL endpoints usually directly return sets of bind-
ings, they can also be viewed as a variant of s*(-) by returning
subgraphs of the form p(P)®,

e any pattern P is admissible;

e Q = {0}, unless VALUES patterns are considered, which could
be viewed as equivalent to binding restrictions a la LDF,

o ®: while some SPARQL endpoints support other forms of
paging, the standard LIMIT and OFFSET operators for BPGs

4We note that this strict definition of allowed parameters for s is not made in [30], but
we will rather use those here to describe the considered APIs uniformly.

5 As such 1,0 should be viewed synonmous SPARQL’s LIMIT and OFFSET modifiers.
®Deriving y is straightforward since, given P, p and p(P) are in a trivial 1-to-1 corre-
spondence. We prefer this interpretation of the LDF metaphor to SPARQL endpoints
over — as suggested in a side note in [30] - relying on encoding result sets as RDF
triples (such as using e.g. the informal RDF SPARQL result format from the SPARQL1.1
Test Case Structure, cf. https://www.w3.0rg/2009/sparql/docs/tests/README .html)
since the latter would not return subgraph(s) of G.

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

could be considered as LIMIT [and OFFSET o such thatn =
|P|; however, note that subsequent calls of SPARQL queries
with consecutive OFFSETs are in general not guaranteed to
behave deterministically.

SaGe is - in essence — a SPARQL endpoint with the ability to inter-
rupt queries under too much concurrent load on the server side [19].
That is, in principle, we can view SAGE as a variant of SPARQL
endpoints that, given a query P whose execution exceeds a timeout
7, suspends it and only returns a partial result {I', ...,T,—1}, along
with additional state information to the client. The client can (with
additional hypermedia controls using this state information) deter-
ministically continue exactly at offset o in a subsequent call. Hence,
in times of high query load, SAGE uses this strategy to suspend
clients to avoid starvation of others. We note that, while the SAGE
server itself is stateless, i.e., it does not store the intermediate states
of the suspended queries, it handles the overall query execution
load incl. join processing for BGPs.

Triple Pattern Fragment (TPF) [30] is an interface to enable
live SPARQL querying with high availability and scalability by
restricting server capabilities to only answer single triple pattern
fragments and shifting processing of more complex patterns to
the client-side (with the expenses of a substantial increase in the
network traffic). In terms of the generic LDF framework, TPF is the
most straightforward “incarnation”, defined as:

e the selector function is s(-) as defined above,

o the only admissible form of P are triple patterns and Q = {0},

e ®(n,l,0): allows results to be “batched” into chunks of n
triples, whereas limit [and offset o cannot be set explicitly
in TPF.

Binding-Restricted Triple Pattern Fragments (brTPF) [12] is
an extension of TPF that reduces the network load through addi-
tionally permitting arbitrary Q # 0. This ensures fewer requests
to the server plus faster query processing. However, brTPF still
potentially struggles with high numbers of concurrent clients or
queries with large intermediate results.

Star Pattern Fragments (SPF) [1] proposes to generalize brTPF
from single triples to handling star-shaped subqueries on the server.
Similar to TPF, more complex queries involving joins over stars
or single triples are processed on the client. Still, evaluating star-
shaped subqueries directly on the server may drastically reduce
the number of requests made during query processing while still
maintaining a relatively low server load since star patterns can be
answered relatively efficiently by the server [25]. For processing
joins efficiently, analogously to brTPF, bindings can be shipped
along with each star-shaped subquery. SPF, as an instance of LDF,
differs from brTPF with respect to the restriction of the selector
function and allowed patterns:

e sspr(G,P, Q) =s*(G,P,Q),ie.,s"(-) isused to return results
per pattern solution,

o the only admissible form of P are star-shaped BGPs,

e Q can be any set of bindings,

e ®(n,l,0): as solutions are returned per pattern solution, n
is fixed to the star pattern of size k but SPF also allows to
paginate over solutions, i.e., retrieving results in chunks of /
(iterating over increasing offsets 0 := o + I).

https://www.w3.org/2009/sparql/docs/tests/README.html

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Experiments [1] show that SPF (compared to brTPF) can decrease
the number of requests made to the server and intermediate re-
sult sizes transferred to the client, maintaining a comparably low
network load.
smart-KG [6] (SKG) is another alternative paradigm that combines
TPF with the idea to ship graph partitions per star-shaped patterns.
To this end, the server holds (compressed and queryable) partitions
per common predicate families of G, defined as follows:

DEFINITION 2 (PREDICATE FAMILY). We define a predicate family
F(s) wrt. to KG G as the set of predicates associated with subject s:

F(s)={p| 3o € 0bj(G) : (s,p,0) € G} (1)
We denote the set of families of a graph G as F(G) or F for simplicity
whereby F(G) = {F(x)|x € subj(G)}.

Predicate families, also known as characteristic sets, were intro-
duced in [23] as an RDF query cardinality estimation method while
SKG uses families as a basis for inducing a graph partitioning of G,
with one partition Gf per f € F(G) [6].

We can interpret SKG as an LDF interface as follows:

e admissible patterns are defined by submitting a predicate
family ' = {p1,...pr}, which may be interpreted as a
pattern Ule{(?s,pi, ?P;)}, or resp., in SPARQL syntax, as
(7S p1 P15 p2 2Pa; -5 pe Pr-d,

e Q = {0} is the only admissible binding set, i.e., SKG does
not consider binding restrictions,

o the selector function may be viewed as a variation of s(-) as
follows: while the SKG server API returns a graph Gy per
family f € F(G) matching P, the union of all these graphs
is defined as

sskG(G,P,Q) = {t € G| 3t' € s(G,P, Q) : subj(t) = subj(t’)}

That is, while strictly speaking, indeed rather several par-
titions Gf are returned, ssgg(G, P, Q) = U =1 Gf defines
the union of all these partitions Gy C G such that f' C f
which are sent to the client,
e ®: only n = oo is admissible, i.e., no paging is supported since
the union of all relevant partitions is returned - unlike SPF
an over-estimation representing all subgraphs relevant to a
star-shaped subquery
An SKG client hence decomposes BGPs into families f” of star-
shaped subqueries — on an abstract level, discarding variables or
concrete bindings - and fetches via this API the subgraphs G (that
are available in compressed form on the server) matching f’; single
non-star triples in the BGP are retrieved via TPF and joins between
star-shaped subqueries, and single triple queries are then computed
on the client-side. Evaluations [6] show that this approach is highly
competitive for many concurrent clients due to its low server and
(due to partition compression also) network footprint. As for ®, note
that it would not make sense to decompose family-based partitions
into chunks since chunking up the HDT-compressed partitions
would require decompression.

2.2 RDF HDT Compression

It is worthwhile to also explain the HDT [10] binary compression
format for RDF datasets that is used “under the hood” in all of
the previously mentioned interfaces, namely (br)TPF, SAGE, SKG,

Azzam and Aebeloe, et al.

and SPF, as well as in our novel approach presented in this paper.
HDT offers efficient search and retrieval over the compressed RDF
graphs without the need for decompression and offering query rel-
evant statistics directly in its metadata. The main compression idea
relies on ordering triples by SPO, grouping repetitive RDF terms.
An HDT file could be viewed as a compressed, directly queryable
SPO-ordered index. In addition, HDT provides a compressed binary
utility index built upon loading time covering OPS PSO to achieve
a high performance for resolving any SPARQL triple pattern. TPF
and SPF rely on an HDT of the whole graph G to evaluate triple
and star patterns on the server with a low computation footprint,
whereas SKG profits from the compression also lowering the net-
work footprint when shipping family partitions Gy.

3 MOTIVATING EXAMPLE

All thus far described KG APIs alone suffer from an imbalanced load
on either client-side (dumps, TPF, SKG) or server-side (SPARQL
endpoints, SAGE, SPF). In this paper, we therefore advocate that,
based on decomposing BGPs into star-shaped subqueries and char-
acteristics of these subqueries (e.g., selectivity and intermediate
result cardinality estimation), we can optimally distribute the query
processing load between client and server. Hence, given statistics
as well as information about the current server workload and the
client’s capabilities, we can pick the best suited KG APL

In particular, the factors that our cost model considers are server
load, client computing resources, and the number/size of interme-
diate results to be transferred over the network (in combination
with available bandwidth), since several sources [1, 6, 13, 21, 22]
identified these as important dimensions when accessing KGs.

To elaborate, let us consider query Q given in Figure la. All
triple patterns of Q have quite large cardinalities, meaning that both
single pattern interfaces (TPF, brTPF) would need to send enormous
numbers of requests to the server and ship large intermediate results
to the client when processing the query.

For both star-based interfaces (SPF and SKG), the query would
be decomposed into two stars and a single triple pattern: sp; =
{tp1,tp2,tp3}, sp2 = {tp4,tp5}, and tp6. sp; has 89,366 solution
mappings, and spz has 600,349 solution mappings. Both, SKG and
SPF would estimate the result sizes of star patterns and, in essence,
order the query execution plan accordingly to (sp1, sp2, tps), i.e.,
starting with sp;. SKG ships a partition containing 1,628,572 stars
in total leading to excessive data transfer even though the partition
is HDT-compressed. SPF, on the other hand, only ships the 86,366
stars that actually match spj, resulting in less of a network over-
head and faster query processing. However, in order to process the
join between sp; and spy, SPF’s client join processor would batch
the 89,366 bindings into groups of 30 bindings each, sending one
request per batch, amounting to 2,979 requests. This overhead could
be conveniently mitigated by instead shipping the compressed par-
tition for sps and joining on the client: this example illustrates
how a combination of SPF’s server-side star evaluation with SKGs
partition shipping could outperform either approach alone. More-
over, note that in case of a high server workload, the additional
network overhead for transferring the partition for sp; might still
be affordable, compared to server-side SPF processing of sp; using
the overloaded server.

WiseKG: Balanced Access to Web Knowledge Graphs

select + where {

?album dbo: artist ? artist . # tp1: 146,716 matches (sp1)

?album rdf:type dbo:Album . # tp2: 147917 matches (sp1)
?album dbo:releaseDate ?date . # tp3: 212290 matches (sp1)
? artist dbo:genre ?genre . # tp4a: 576,000 matches (sp2)

? artist foaf:name ?name . # tp5: 4,146,579 matches (sp2)
?song dbo:writer ? artist . # tp6: 200969 matches

(a) Show artists’ albums, genres, and the songs they have written

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

(b) Query execution plan for (spsFF, sps

KG, tPE?PF)

Figure 1: Example of processing a SPARQL query with WiseKG

4 WISEKG

In the spirit of the example presented in Section 3, WisEKG enables
to leverage (i) the characteristics of the star-shaped subqueries
as well as (ii) information on the currently available client and
server resources, to estimate the cost of processing each star-shaped
subquery on the client (using SKG) or on the server (using SPF), -
choosing the most efficient execution strategy dynamically.

4.1 Overview

WiseEKG employs a dynamic cost model to determine an annotated
query plan: in order to denote query execution plans (cf. Section 2)
with particular interfaces to be used per subquery, we will use
superscripts SPF and SKG, i.e., for our example the annotated plan
II = (sprF, spgKG, tngF). In case of the example in Figure 1b
this would mean that sp; is evaluated via SPF on the server, spy is
executed using SKG on the client, and the resulting bindings from
joining both are given as input Q to a call of tps executed again
using SPF on the server”.

Upon receiving a BGP P from the client, the WiseKG server will
decompose it into star-shaped subqueries, and use its cost-model to
create an annotated query plan IT that is returned to the client, along
with a timestamp 7 denoting plan expiry. The client then, in the
order specified by the server, executes IT using the APIs specified in
the plan annotations. In case the execution is not completed by 7,
the client needs to request a new annotated plan, which may look
different — as mentioned before and illustrated in the example, the
choice of API per subquery taken by the server may depend on its
current load, as discussed in the following.

Formally, the Wi1sEKG server API offers the following interface
calls access KG G:
an SPF LDF API control SPF(P, Q) returning sspr(G, P, Q) ,
an SKG LDF API control SKG(P, Q) returning ssx (G, P, 0)8,
an execution plan interface Plan(P) returning a pair(Ilp, 7). We
will use the notation ¢(P, Q) to denote that a (star-shaped) sub-
pattern P is executed by a control ¢ € {SPF, SKG} - in the spirit
of LDF, we expect also other (hypermedia) controls to be callable
in addition to SPF and SKG in the future. Further, in this paper
we assume that the call to ¢(P, Q) on the client side is converted
Note that for triple patterns, SPF is equivalent to brTPF so we can use the SPF interface

also for single triple patterns.
8Note that SKG does not allow to ship bindings, cf. Section 2.

to a set of bindings through a function eval. (P, Q) = Q > [[P]].
Note that, depending on whether the underlying selector function
of ¢(P, Q) is already accepting bindings, directly returning Q <
[[P]]G (such as for SPF) or only returning a graph of which [[P]]g
can be computed and then joined with Q on the client (such as for
SKG), eval, incurs more or less work on the client side.

Plan(P) maps a BPG P to an annotated plan IIp along with the
expiry timestamp 7 = 7¢ + 1, where 7 corresponds to the current
time, and ¢ is a fixed time quantum per query®. Ilp is constructed
from S(P) by (i) identifying the best join amongst stars based on
cardinality estimations and (ii) determining, based on factors such as
the current load on the server and the estimated network/processing
cost, the best interface (SPF or SKG) per subquery. Before we explain
(server and client) query processing in more detail (cf. Section 5),
we first present the server cost model, which is used to make this
latter choice.

4.2 Server-Side Cost Model

In this section, we present WisEKG’s server cost model used to deter-
mine the choice between client-side evaluation using SKG or server-
side evaluation using SPF. The cost model is inspired by the classic
R* optimizer [18] from the field of distributed databases [18, 31].
In the R* model, the total time is the sum of four time components
(CPU processing, messaging, data transfer, and I/O) that can be
estimated for a query Q as:
cost(Q) = processing + Messaging + data transfer + I/O

Following the R* model, we consider, in our client-server archi-
tecture, the following components to approximate the total time
consumed by client and server to process a star subquery: estimated
number of CPU instructions (#CPU), estimated number of I/O op-
erations (#I0), as well as two communication cost components —
estimated number of requests (#M) and estimated number of trans-
ferred bytes (#BYT) over the network per query. WiseKG’s cost
model for a given star subquery is then defined as

cost(sp) = Wepy X (#CPU) + Wiyrsg X (#M)

Processing

+ WgyT X (#BYT) + Wip X (#I0)

Messaging

()

Data transfer I/0

Somewhat similar to/inspired by SAGE’s[19] query suspension timeouts.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

where the weights Wepy, Wyvisg, WayT, and Wi help estimat-
ing the time required by the client and server hardware configu-
ration to perform a CPU instruction, the time required to send an
(HTTP) request message from a client to a server over the network,
the time required to transfer one byte from a server to a client over
the network, as well as the time required for a disk I/O operation.
It is important to note that WisEKG’s server optimizer is tailored
to embed dynamic factors to reflect the current server load. These
weights are estimated as follows:

Wepu: We estimate time per CPU instruction as the inverse of
the CPU’s IPS (Instructions per second) rate, damped by the current
CPU load in percent!?:

1
IPS x (100% — CPUysqge)

Wepu =

Wusa: The average time to transmit an HTTP request from a
client to the server. In our experiments and network setup, similar to
SAGE’s experiments [19], we assume as a constant value of W5 =
50ms for all clients. In a real world scenario, we would measure this
delay based on an initial HTTP request per client.

WgyT: We estimate Wy by the conservative minimum between
the available server bandwidth bwge,, (Which we estimate as the
difference between bandwidth of the server network card reduced
by the average data transfer over the network in the last 1 minute,
again checking every second) and the client bandwidth bw,jjen;,
which we estimate as 20Mb/sec in our setup, similar to [6]. This way,
Wyt takes into account the current network usage of concurrent
clients. In our experiments, .

1

Min(bwciiens bWsero)

Weyr =

Wro: We measure I/O in terms of loading chunks of 1MB from
disk, i.e., we estimate Wjp as the time required to read 1MB to
the memory. In WiseKG, the I/O times differ per chosen API: for
SPF, a single HDT file of the entire graph G is used and mapped
into memory while auxiliary bitmap indexes remain in memory
to help localize potential mapping solutions (using approx. 3% of
the entire HDT file altogether [10]). Thus, the I/O time accounts
for transferring non-cached blocks that might contain the mapping
solutions to memory. In SKG, the I/O time is due to the server
reading HDT partitions from disk in order to ship those to the client;
on the client side, we assume processing continues in memory, thus
not involving further I/O operations.

We note that our experiments have shown that in fact /O is a
negligible factor in our setup; for both SPF and SKG (we perform
a respective experiment with a stress-testing workload described
in Section 6.1), we verified that the amount and difference in I/O

times in both approaches was dwarfed by the communication costs.

Therefore, we leave out this factor in our cost estimation model
Wio = 0).

The final time cost estimates of client-side SKG evaluation based
on shipped partitions vs. server-side SPF evaluation of star patterns

10We estimate this current CPU load as the average percentage of CPUysage in the
previous minute (checking every 1sec). Note that for our experiments we only compute
this CPU usage on the server side, i.e. for Wepyg,,,» Wwhereas for WCPUclient we
assume CPUysage = 0, ie,, full availability of client resources.

Azzam and Aebeloe, et al.

are given in Definition 3 and Definition 4. For a query BGP P, these
costs are estimated for each star pattern sp € S(P).

DEFINITION 3 (CosT OF SKG STAR PATTERN EVALUATION). Given
a star pattern sp € S(P) and a plan Ilp, as well as the set of families
Fsp ={f € F(G) | f 2 pred(sp)} relevant for sp in G, the cost in
time of evaluating sp using SKG is estimated as follows:

costsg (sp, 11) = WepU,en X card(sp, IT) X iy +WpgsG X |Fsp| +

—_— —_——
#CPU #M
WayT X (Z size(f)) +Wyjo X (Z size(f)
feFsp feFsp
S———— S——
#BYT #10

DEFINITION 4 (CosT OF SPF STAR PATTERN EVALUATION). Given
sp, Ip, and Fp, the cost in time of evaluating sp using SPF is esti-
mated as follows:

costspr (sp,II) = Wepy,,,, X card(sp,IT) X iy +

—————
#CPU
card(sp,II)
W, X ———
MSG CI)(n)
———
#M
WayT X card(sp,II) X by +Wo X size(G)
— ~—
#BYT #10

Definitions 3 and 4 use the following functions and variables:

e card(sp,II) returns an estimated result cardinality for eval-
uating star pattern sp using an estimation of the number of
bindings for previously evaluated star patterns in II. This
estimate (based on statistics about the sizes of subgraphs per
characteristic set) is described in [23].

o size(-) is either the size of an HDT file (plus index) for a
partition corresponding to a family f € F(G) or, for size(G)
the size of the HDT file for the entire graph G11.

o i; is the number of CPU instructions needed to process each
triple in the result set. In general, we rely on HDT algorithmic
costs which are sub-linear and close to constant for most
operations. [10]; we only measured one millisecond (or at
most a few milliseconds) in our experiments. We therefore
set this factor to i; = 1. Different IPS rates in the server and
client are considered in the different weights: Wepy,,,, and
WEPUeien:-

o b; is the average number of bytes per triple in the result; we
estimate this factor by averaging the size of the triples in
each family partition.

5 OQUERY PROCESSING

In this section, we detail how the W1seKG server and client work
together to process SPARQL queries. In particular, we describe how
the query processing is performed on the server side and on the
client side.

Note that SPF relies on a single HDT for G whereas SKG only transfers the HDT
files corresponding to Fgp.

|

WiseKG: Balanced Access to Web Knowledge Graphs

5.1 Server-Side Query Processing

Since the server-side processing of star-shaped subqueries in SPF
and SKG APIs running on the server are explained in detail in [6]
and [1], we mainly focus on the creation of the annotated execution
plan in this section: when the WiseKG server receives a Plan(P)
request for a BGP P, it creates a query execution plan specific to
P, which it returns along with the expiry timestamp 7 to the client
for execution; the resp. algorithm to compute Plan(P) is shown in
Alg. 1.

Algorithm 1: Create an annotated query execution plan
Input: P = {tp1,tps, ..., tpn} // aBGP
Output: (TIy, 7) // an annotated plan and its expiry time
1 function Plan(P)

2 S «— 8(P)

3 I, « 0

4 while S # 0 do

5 for sp € S do

6 cntsp < card(sp,I1p)

7 if cntsp = 0 then

8 ‘ return ()

9 sp; < sp where sp € S and cntsp < cntgyy for all

sp’ €S

10 if costspr(spi,IIp) < costskg(spi,I1p) then
1 | Tp « append(Ilp, (sp;FF))

12 else

13 | TIp « append(Ilp, (sp?XC))

14 S «— S\ {spi}
15 T« T+
16 return (Ilp, 7)

The first step is to decompose the query into star-shaped sub-
queries (line 2). To create the execution plan, we find the star-
subquery with the lowest cardinality estimation (line 5-8) and add
it to the plan; when we find a query with an empty result (e.g. in
case no matching family partition exists [6]), we can stop since the
final result will then also be empty. The star pattern with the lowest
cardinality estimation is selected first (line 9), thus overall in the
final plan, patterns are ordered by estimated cardinality.

Then, the estimated costs for SPF and SKG are compared in Line
10; depending on the cost models from Section 4.2, each subquery
is annotated with the resp. control for evaluating the star pattern
on the server, i.e., SPF (line 11) or the client SKG (line 13). Here,
the append function just appends the annotated star pattern to the
end of the plan. When there are no more subqueries left in the
star decomposition, the algorithm returns the plan (line 16) after
computing the expiry timestamp (line 15).

For the query Q shown in Figure 1a, this algorithm could compute
the execution plan in the join order visualized in Figure 1b (unless
the server load is too high, in which case SP; could also potentially
be suggested to be executed using SKG).

Finally, as a side note, we note that, based on the fact that not
all family partitions in SKG are necessarily materialized on the
server — SKG does not materialize HDT files over a certain partition
cardinality threshold (for details, cf. [6, Section 4.1]); in such cases

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

the concrete implementation of Alg. 1 defaults to SPF, i.e., server-
side evaluation of the resp. star pattern, independent of the cost.

5.2 Client-Side Query Processing

Processing queries on a W1seKG client relies on an approach similar
to the one presented in [1], which we adapt herein to accommodate
for client-side processing of HDT shipped family partitions. In the
following, we describe the basic ingredients that the client needs
to process full SPARQL queries: WISEKG is able to process full
SPARQL queries including operators such as UNION and OPTIONAL,
FILTER, etc.,'? which are all evaluated on the client-side. Herein,
we only focus on the BGP evaluation part.
The general approach for processing BGPs P is as follows:

(1) Retrieve the query execution plan and time quantum for P
from the server by calling Plan(P) = (Ilp, 7).

(2) For each star pattern sp® € IIp with control ¢ € {SPF, SKG}
in IIp and solution mappings from previously evaluated
operators Q, iteratively do the following:

(a) If T < 7¢, i.e., the plan has expired, the client requests a
new execution plan/expiry based on the remainder of P
that has not yet been processed.

(b) Otherwise we call the interface c(sp, Q) and convert it to
a set of bindings using eval(sp, Q), which as mentioned
above, in the case of ¢ = SKG involves client-side eval-
uation of the star-shaped pattern on the shipped HDT,
whereas SPF directly returns the result bindings.

The exact algorithm implementing these steps in a recursive manner
is shown in Alg. 2.

Algorithm 2: Processing a Query Execution Plan

Input: 11 = (sp;’,....spy") // an execution plan;
T // expiry timestamp;
Q’ // a set of bindings
Output: Q // set of solution bindings
1 function evalPlan(11, 7, Q)
2 if 7 < 7¢ then
3 | (IL r) « Plan(BGP(I))
4 if IT = sp€ then
5 ‘ Q « eval:(sp, Q')
6 else
7 Q eualPlan((spf‘, . ,.,spfl’fll), 7, Q')
8 Q evalPlan(spfl", 7, Q)
9 return Q

Line 2 checks whether the plan has not yet expired; in that case,
the algorithm calls Plan(II) to reevaluate the plan on the server (line
3)13. The way this is currently done can be understood as follows:
assuming the originally requested plan is (spf1 e spici ...spor) and
the client reaches 7 at step i. Then the client will restart calling
Plan({spi....spn}) receivinganew planIl(s,, 5.1 upon whichit
continues; obviously this could change the interface choices per star
for the remaining plan, based on the current server load situation.
2with the exception of GRAPH query patterns, since HDT does not support named

graphs.
3Here, BGP(IT) denotes the corresponding (non-annotated) BGP for plan II.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Continuing on Alg. 2, in case the plan is associated with a single star
pattern sp (line 4), we call the control ¢ € {SPF, SKG} to retrieve
the output plan and obtain the output solution mappings (line 5).
Otherwise, the algorithm will make a recursive call for the left
subtree (line 8) the resulting bindings of which are handed over to
the call of the right subtree (line 9).

6 EXPERIMENTAL EVALUATION

In this section, we compare the performance of WiseKG with the
state of the art SPARQL query processing interfaces.

6.1 Experimental Setup

In this section, we describe the experimental setup, including the
systems we compare against, datasets, queries, and hardware and
software configurations.

Implementation details. We implemented both W1seKG client
and server in Java'* extending the TPF implementations' so that
we ensure comparability and compatibility with the spectrum of
Linked Data Fragment (LDF) approaches including TPF, SPF, and
smart-KG. The WisekG server relies on SPF star pattern frag-
ments for server-side processing of star-subqueries. Furthermore,
the WisekG server adopts the family generator component from
smart-KG [6] to generate, manage, and store the HDT files of the
family-based partitions. In our server-side cost model, we depend
on a cross-platform operating system and hardware information
library for Javal® to retrieve system information about clients and
the server resources usage including network and CPU usage. The
WiseKG client implements a pipeline of nested iterators similar to
brTPF and SPF client implementations.

Configuration. To assess the performance of our system under
different loads, we perform experiments over eight configurations
with 2! clients (0 < i < 7) issuing queries concurrently for each
configuration (up to 128 concurrent clients). Each concurrent client
executes one query at a time, i.e., at most 128 queries are executed
at the same time.

Datasets. We use three different sizes of the Waterloo SPARQL
Diversity Benchmark (WatDiv) [4] to test the scalability of our ap-
proach: 10M, 100M, and 1B triples. In addition to these, we also use
the real-world dataset DBpedia [16] (v.2015A). The characteristics
of the evaluated RDF graphs are described in Table 1.

Table 1: Characteristics of the used datasets

Dataset #triples #subjects #predicates #objects #families
watdivieM 10,916,457 521,585 86 1,005,832 21,210
watdivieeM 108,997,714 5,212,385 86 9,753,266 37,392
watdiviB 1,092,155,948 52,120,385 86 92,220,397 52,885
DBpedia 837,257,959 113,986,155 60,264 221,623,898 29,965

Queries. We consider three different query workloads for the Wat-
Div datasets: (i) a basic testing workload named watdiv-btt that
consists of queries obtained from WatDiv basic testing templates!”.
Each client has a set of 20 queries including star queries (S), linear
queries (L), snowflake queries (F), and complex queries (C); and
https://github.com/WiseKG/WiseKG-Java
https://github.com/LinkedDataFragments/Serverjava

®https://github.com/oshi/oshi
https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

Azzam and Aebeloe, et al.

(ii) a diverse stress testing workload named watdiv-sts that con-
sists of queries obtained from the WatDiv stress-testing suite[4].
Each client has a set of 154 non-overlapping queries. In addition to
these workloads, we randomly selected 16 queries from a real-world
LSQ query log [27]; plus, we included 12 queries used to evaluate
smart-KG [6].

Compared Systems. To test the effectiveness of dynamically shift-
ing star-subquery processing between client-side and server-side
based on the status of server-side resources disregarding the cost
model defined in Section 4.2, we implemented a version of WiseKG
named WISEKGy,.,,,istic that relies on more straightforward heuris-
tics. Initially, WISEKGy,ey,risric €Xecutes all star subqueries on the
server side up to a predefined CPU usage threshold . When the
threshold is reached, W1SEKGy,¢,,isric produces an execution plan
exclusively based on shipping family partitions. In addition, we
evaluate WISEKGos¢, our main contribution, which is a version of
WiseKG that relies on the cost model described in Section 4.2. Note
that we use the recommended versions of both server and client for
all the evaluated systems including Star Pattern Fragment (SPF) [1],
smart-KG [6], SAGE [19], and Triple Pattern Fragments (TPF) [30].
Hardware configuration. We ran all 128 clients concurrently on a
virtual machine with 128 2.5GHz vCPU cores, 64KB L1 cache, 512KB
L2 cache, 8192KB L3 cache, and 2TB main memory. To ensure an
even distribution of the resources between the clients, we limited
each client (for all approaches) to run with a single vCPU core
and 15GB main memory. WIsEKG and all the compared system
servers were run on the same server with 32 3GHz vCPU cores,
64KB L1 cache, 4096KB L2 cache, 16384KB L3 cache, and 128GB
main memory. Clients and servers are located on the same 1 GBit
network. In order to emulate a more realistic bandwidth scenario,
we limited the network speed of each client to 20 MBit/sec.
Evaluation metrics.

e Timeouts: number of queries that exceed the timeout.

o Workload Completion Time: the total time required by a
client to complete a workload.

e Query Execution Time: the average time it takes to com-
plete a query.

e Server CPU load: the average percentage of server CPU
usage during the execution of a query workload.

e Number of Requests made to the Server: the number of
requests a client sends to the server.

e Number of Transferred Bytes: the number of bytes trans-
ferred between server and client, i.e., the sum of both direc-
tions.

Software configuration. Following the experiments performed
in [1, 6, 19], we used a timeout of 300 seconds, i.e., 5 minutes, for all
approaches. That is, after 5 minutes we suspend the query execution.
The page size ®(n) for TPF, SPF, and WiseKG was set to n = 100
(as in [1, 30]) and the maximum number of bindings attached to a
request for SPF and W1seKG was set to |Q| = 30 as it was in [1].
In order to assess our approach against the others using as similar
as possible configurations, we set the time quantum : to the same
value as the overall timeout for all systems, i.e., 5 minutes.!8

8n our current setup and evaluation covering widely used benchmarks in the area,
the expiry timestamp was hardly reached. While we already significantly outperform
all state-of-existing approaches, we still deem the addition of a plan expiry needed
both conceptually (as the system resources change dynamically over time and our

https://github.com/WiseKG/WiseKG-Java
https://github.com/LinkedDataFragments/Server.java

WiseKG: Balanced Access to Web Knowledge Graphs

B SmartKG

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

== WiseKGneuristic B WiseKGcost

mea TPF NN SaGe m=mE SPF
103
5000 <
e
10
4000 o
E £
3 =1
£ 3000 B
= S0t
S X
z
2000 S
2100
1000 z
L

10M

10M 100M

(a) Number of Timeouts

100M

(b) Avg. Workload Time

10*

10%

Queries per minute

10?

10M

(c) Queries per minute

Figure 2: Number of timeouts, average workload time, and throughput for 128 clients over watdiv1oM, watdiv10oM,

and watdiviB on watdiv-sts

6.2 Experimental Results

Due to space restrictions, this section focuses on the most important
results. All results, incl. additional experiments, details on the im-
plementation and configurations used in the experiments (datasets
and queries) are available online!?.
System Performance Evaluation. In this part of the evaluation,
we focus on analyzing the behavior of the compared systems in
the scenario of increasing KG size with the highest number of
concurrent clients (128 clients) using the watdiv-sts workload. As
shown in Figure 2, WISEKGy,¢yistic, the vanilla version of WiseKG,
performs significantly better than the state-of-the-art systems in
terms of performance and scalability, not to mention Wi1sEKGcos¢
(just W1sEKG hereafter) has even surpassed Wi1SEKGp,,ristic-
Figure 2a shows that WIsEKG produces no timeouts over the
watdiv10M and watdiv10@M datasets for 128 concurrent clients.
Moreover, even in the case of watdiv1B, WisekG only incurs 2%
timeouts of the total workload queries. In contrast, none of the
compared systems was able to process all queries with a 5-minute
timeout, except SPF and SAGE on the watdiv1oM dataset. When
queries are executed over the watdiv1B dataset, the percentages
of timeouts reach 13% and 21% for smart-KG and SPF, respectively.
For SAGE and TPF, the percentages of timeouts increase up to 55%.
These results confirm the superior scalability of WiseKG compared
to state-of-the-art systems. These experiments show that even for
a high number of clients, WiseKG is able to handle large scale KGs.
Figure 2b shows that the average workload completion time in-
cluding queries that timed out. WiseEKG is up to 4 times faster than
SPF and smart-KG, and up to an order of magnitude faster than
SAGE and TPF over watdiv1B with a load of 128 concurrent clients.
In addition, Figure 2b also shows that SPF and smart-KG have
comparable average workload time. smart-KG performs slightly
better for watdiv100M and watdiv1B datasets. This is not surpris-
ing since they similarly rely on star decomposition; SPF executes
the star subqueries on the server side while smart-KG ships the rel-
evant partitions for the subqueries and executes them on the client.
Compared to SPF and smart-KG, Wi1seKG provides a significant
performance improvement as a result of the proposed cost model

model needs to consider the current “promises” it made to clients) and useful for future
workloads on larger knowledge graph.
https://github.com/WiseKG/WiseKG-Experiments

that optimizes query processing by leveraging the subqueries’ cardi-
nality estimation as well as available client and server resources to
determine an efficient execution plan. To provide a comprehensive
evaluation, we also include TPF and SAGE in our experiments. As
shown in Figure 2, our experiments confirm a previous study [6]
that SAGE performs far better than TPF for small datasets. However,
when dataset size increases and the number of concurrent clients
is high, the difference between TPF and SAGE becomes less visible.
Note that we did not include a SPARQL endpoint (e.g Virtuoso) in
our experiments, since several previous studies [1, 6, 19, 30] have
already shown that SPARQL endpoints are not able to scale well
with an increasing number of clients.

We compare the performance of WisekG to state-of-the-art
interfaces considering real-world queries on DBpedia. Figure 3
presents the execution times of these 28 queries for all systems.
The results confirm that WiseKG significantly outperforms the
compared systems for the real-world queries. Figure 3 shows that
TPF is the slowest or the second to slowest in all queries. On the one
hand, smart-KG suffers from excessive delays in queries that require
non-materialized partitions such as Q2, Q4, Q8, Q12, Q15, Q19, Q21
and Q25 since, in this case, smart-KG depends on TPF in addition to
queries with high selectivity such as Q6, Q16, Q20, and Q26 as it is
more resource-efficient to process on the server-side. On the other
hand, SPF has a robust performance in most of the queries due to its
efficient server-side star pattern execution, except the queries with
low selectivity such as Q24 and Q28 due to the excessive transfer
of intermediate results. Moreover, SAGE has worse performance
than Wi1seKG for the less selective queries with large intermediate
results, such as Q7 and Q28, due to these queries putting more load
on the server and incurring more requests to the server. The queries
where SAGE has slightly better performance than Wi1sekG, such as
Q2 and Q4, are generally queries where the overhead of computing
the execution plan for WIsekG is a considerable part of the overall
execution time (i.e, very simple queries).

Finally, WISEKGy,¢y,istic 1S faster than WiseKG for the queries
with execution time less than 0.1 seconds. This is because WiseEKG
has the overhead of computing the best query plan.
Performance evaluation on different query shapes. In this
part of the evaluation, we analyze the effect of the query shapes
on the performance of the systems. We use queries of 4 different
shapes including linear (L), star (S), snowflake (F), and complex

https://github.com/WiseKG/WiseKG-Experiments

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

@A TP NN SaGe = SPF

XX SmartKG

Azzam and Aebeloe, et al.

== WiseKGpeuristic BBl WiseKGcost

Execution Time (sec)
=
o
2

A O A O L 1

rivininiviy
iRARARARARAR
isfadanago

inininanining

i
o AR

el
=

~ [HHr
[y isivivini

N
=3

QL Q2 Q3 Q4 Q5 Q6 Q

Q8 Q9 Qu

el
=

el
=

INRririviviriivivirininindn i irandnaaini
wArA AT A TR A R AT A R A T T AR A RA AT AN
< A T L LI O L L LT

oo [A e T FTTTT

> (A0
[l inivinining
o [

7 5

Q16 Q1 Q23 Q24 Q2

el
=

Q20 Q2

Q
NS
Q
o
Q
~
Q
N3

Figure 3: Execution time (in seconds) for 28 diverse queries over the dbpedia dataset.

—e— TPF —o— SaGe —u— SPF —— SmartKG F— WiseKGheuristic —h— WiseKGcost
100
300 Fa
< 80
Q
e 60 200
g —— . R
= 40
o 100
Z 20 LZ
olms= - — . — 0
0 50 100 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 25 50 75 100 125
No. clients No. clients No. clients No. clients
(a) L1-L5 (b) S1-S7 (c) F1-F5 (d) c1-C3

Figure 4: Avg. execution time per client over watdiv100M for the watdiv-btt workload.

(C) queries. These queries are part of the watdiv-btt workload
and executed against watdiv100M. The watdiv-btt queries were
executed in a different (random) order on each client and the results
were recorded as the overall execution time per query shape aver-
aged across all clients. Figure 4 shows the average query execution
time for each shape.

In compliance with the system performance analysis, WisEKG
outperforms all state-of-the-art systems for all different query
shapes. For the L-workload, all systems have a similarly efficient
performance since this workload includes the simplest queries with
a small diameter. As shown in Fig. 4b, SPF provides an excellent
performance for S-workload — as expected since it is optimized for
star queries with high selectivity. On the other hand, smart-KG
performs worse than SPF since it sends an entire partition with
unnecessary intermediate results for such queries. In general, SAGE
has an outstanding performance for all query shapes, especially for
the F-workload as shown in Fig. 4c. This is due to the fact that the
watdiv-btt workload includes only 20 queries per client (i.e low
query arrival rate) and we use a medium-size watdiv-100M dataset
for this experiment.

Fig. 4d shows that the behavior of the compared systems dra-
matically changes for the C-workload. For instance, WiseKG sig-
nificantly outperforms state-of-the-art interfaces, even SAGE in the
single client configuration. SAGE starts ahead of smart-KG up to 16
clients, then smart-KG performs better with higher numbers of con-
current clients. SPF suffers excessive delays in C1 since the query
includes 3 stars that have intermediate results with high cardinal-
ities. For query C2, SAGE outperforms all the compared systems.
In contrast, smart-KG and TPF are significantly worse (both time
out) than SPF due to SPF’s better handling of triple patterns with
large cardinalities by shipping bindings along with star-shaped

subquery requests. Interestingly, although WiseKGy,.,,,is¢ic times
out in C2, W1seKG was able to efficiently perform the query with
a slightly higher average time compared to SAGE. This is due to
the accurate estimations of the cost model. Finally, for C3, though
SPF and smart-KG are optimized for star queries, e.g., C3 is a single
unbounded star, WiSEKG is up to three times faster with 128 clients.
Impact of cost model components. We performed an experi-
ment with several different configurations of the cost model over
watdiv10eM on the watdiv-sts workload in order to evaluate the
impact of the cost model components on WiseKG query perfor-
mance and resource consumption. To measure the impact of the
cost model components, we configured three different versions
of WiseKG including data transfer component only (Costp), data
transfer and messaging components (Costyp), and finally, a ver-
sion with processing, messaging, and data transfer components
(Costppp)- For this experiment, we used WiSEKGy,,,,risric as base-
line. Figure 5a shows that for the configuration with 128 clients
Costppp improves the average workload completion time (14 min)
compared to Costp and Costyrp (19min and 16min, respectively). In
addition, Figures 5b and 5c¢ show that Costpysp requires on average
less CPU usage and number of requests than Costp and Costyp.
This is due to the fact that the Costpysp configuration includes the
processing component which significantly contributes to lowering
the CPU load on the server. Although Costp has the lowest trans-
ferred data compared to the rest of the configurations, Costp is the
slowest configuration. The reason for this behavior is that it does not
take into account the HTTP request latency, which is an important
factor to determine the incurred latency especially, in subqueries
that require high numbers of result pages. It is important to note
that all the configurations remain faster than WisEKGy,,,risric, and

WiseKG: Balanced Access to Web Knowledge Graphs

—e— Heuristic —&— Costp

100

—u— Costmp

N
=]

80

N
a

60

40

CPU load (%)

3

20

Workload time (min)
=
1S}

o

—m— Costpup

Number of requests

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Exactp —— Exactyp —+— Exactpmp
10
.
100(¢,
N 8 x‘——b——o\.i
75 N~ e

a
<)
; 15
Transferred MBs
> o
«
[
|
|
I
|
|
[
-

125 0 0 25 50 75

Number of clients

0 25 50 75
Number of clients

100 100 125

(a) Avg. Workload Time (b) CPU Usage

0 25 50 75
Number of clients

100 125 0 25 50 75

Number of clients

100 125

(c) Avg. requests per query (d) Avg. data transfer per query

Figure 5: Impact of the cost model components on the performance and resources consumption over watdiv10oM

mEE TPF NN SaGe SPF B SmartkG = WiseKGheuristic ~ EE WiseKGcost

—e— TPF —— SaGe SPF —=— SmartkG WiseKGpeurisic ~ —A— WiseKGeost

108

10*

10
10?

No. Transferred Bytes (log)

No. Executed Requests (log)
=

100

100

80

@
=}

CPU load (%)
B
o

n
=]

0 20 40 60 80 100 120

oM 1B oM

(a) Number of requests to the server for 128
clients over watdivieM, watdiv1@eM, and

watdiviB (log). watdiviB (log).

100M

(b) Number of transferred bytes for 128
clients over watdivieM, watdiv1@eM, and

1B Number of clients

(c) Avg. Server CPU Usage (in percent-
age) for increasing numbers of clients over
watdiviB.

Figure 6: Number of requests to the server and number of transferred bytes for 128 clients over watdiv1eM, watdiv10eM, and
watdiviB, and CPU load for increasing numbers of clients over watdiviB on the watdiv-sts workload

since WISEKGy,,,ristic 18 faster than all the state-of-the-art systems
(Figure 2), so are all the configurations.

Moreover, to evaluate the impact of using characteristic set [23]
as a cardinality estimation method on the cost model components,
we replaced the cardinality estimation function in the Wi1seKG
configurations described earlier with the true cardinality, creating
the configurations Exactp, Exactpc, and Exactppp, respectively.
Figures 5b, 5¢, and 5d show that Exactp and Exactpc provide faster
performance and better resource utilization compared to their peers
with cardinality estimation Costp and Costpysp. Figure 5a shows
that the configurations with the true cardinality have a comparable
workload execution time (= 14min). This performance is similar to
the performance of Costpyrp even though Exactpyip has a lower
resource consumption.

Finally, our experimental results show that relying on character-
istic sets as a cardinality estimation method provides a compara-
ble performance to the configurations with the true cardinality —
demonstrating a very subtle impact of the cardinality miss-estimates
on the overall performance of WiseEKG. We plan to investigate di-
verse cardinality estimators as future work in order to explore the
impact of different cardinality estimation techniques on WiseKG
query execution time [17, 24].

Resource consumption. In this part of the evaluation, we focus on
the server resource usage including network and CPU consumption.

We report two main metrics to demonstrate the network traffic:
the number of requests sent to the server (NRS) and the number
of transferred bytes between client and server (NTB). Figures 6a
and 6b show the distribution of the number of requests to the server

per query as well as the distribution of the number of transferred
bytes per query, with 128 concurrent clients on increasing KG
sizes (watdiv1oM, watdiv100M, and watdiv1B) for the watdiv-sts
workload. As expected, TPF incurs the highest number of requests
and the data transfer leading to a substantial increase in network
load. Even though smart-KG relies on TPF to execute singular triple
patterns and star patterns with no materialized partition, smart-
KG significantly reduces the number of requests compared to TPF
since it only sends a single request per star pattern. Figure 6a also
demonstrates that WIseKG requires the lowest average number
of requests among all systems due to three main reasons: first,
WiseKG potentially reduces the number of requests required based
on the communication component in the cost model which can be
observed in the difference between the number of requests Costp
and Costpc as shown in Figure 5c; second, WiseKG, in contrast
to smart-KG, ships bindings along with the triple pattern requests
(as presented in brTPF [12] that requires fewer requests than TPF);
third, WisekG has an advantage over SPF to require less requests
in case of star patterns with low selectivity. Figure 6b shows that
SAGE incurs the least data transfer among all compared systems
since SAGE is essentially a SPARQL endpoint with a preemption
model that only transfers the final results. As expected, WiseEKG
incurs less data transfer than TPF, smart-KG, and SPF. To be precise,
WiseKG transfers on average 5.5MB per query while SPF and smart-
KG transfer 7MB and 13MB over watdiv100M dataset. WIsEKG
demands on average less intermediate results than SPF and smart-
KG thanks to the cardinality estimation aware cost model.

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Figure 6¢ presents the average server CPU usage per system
when the watdiv-sts workload is executed over the watdiv10oM
dataset. SPF and SAGE consume more CPU on the server side. This
is expected since SPF processes star pattern queries on the server
side and SAGE utilizes a SPARQL endpoint that does all the work
on the server side. As one can see from Figure 6c, the CPU usage
of these two interfaces approach the CPU processing capabilities
when the concurrent number of clients is set to 128. In contrast,
CPU consumption of smart-KG and TPF remain almost constant
and quite low; under 20% and 30%, respectively. This low consump-
tion is inline with restricted capabilities of these servers: partition
shipping in case of smart-KG and triple pattern lookup in case of
TPF. Figure 6¢ shows that WiseKG’s CPU usage is almost in the mid-
dle between SPF and smart-KG, where it gradually increases up to
60% in the case of 128 concurrent clients, which enables W1seKG to
serve more queries given the current server capabilities (Figure 2a).

7 CONCLUSIONS AND FUTURE WORK

We introduced Wi1seKG, a querying interface to efficiently access
Web Knowledge Graphs. We propose an efficient query process-
ing approach under high query loads by balancing SPARQL query
execution load between servers and clients. To this end, we have
combined two Linked Data Fragments APIs (SPF and smart-KG)
that enable server-side and client-side processing of star-shaped
sub-patterns. Our dynamic cost model picks the best suited API per
sub-query based on the current server load, client capabilities, and
estimation of necessary data transfer between client and server (for
intermediate query results), and network bandwidth. Our experi-
ments show that WiseKG significantly outperforms state-of-the-art
stand-alone LDF interfaces on high demanding workloads, with
increasing numbers of concurrent clients, with increasing KG sizes,
and on different query shapes. We show that WiseEKG’s cost model
improves average workload completion (reducing the number of
timeouts) while also reducing resource consumption (including less
CPU usage and network traffic) compared to existing interfaces.
In our future work, we plan to evaluate in more detail the influ-
ence of different hardware setups and mixes of clients with differing
computational resources. We also, respectively, plan to expand our
query optimizer to consider further aspects, such as additional
hardware parameters, parallelism, network delays, etc. as well as
to provide optimization support for additional types of queries incl.
for instance aggregation [14, 15]. Moreover, we plan to extend our
implementation, which is currently implemented as a standalone
setup, into a framework that flexibly allows to integrate different
LDF APIs [20] and also other cost models. The recently introduced
Comunica [7, 28] platform could serve as a starting point for integra-
tion. While our implementation covers also full SPARQL patterns
(incl. UNION, OPTIONAL, FILTER, etc.) computed on the client
side, the current approach is not dealing with multiple (named)
graphs and GRAPH queries. Looking into extensions of HDT to-
wards handling quads [11] could address this current limitation.

Acknowledgments. This research was funded by the Danish
Council for Independent Research (DFF) under grant agreement
no. DFF-8048-00051B, Aalborg University’s Talent Programme, and
the Poul Due Jensen Foundation. The research was further funded
by the EU H2020 research and innovation programme under grant

Azzam and Aebeloe, et al.

agreement No 957402 (TEAMING.AI) and Marie Sktodowska-Curie
grant agreement No. 860801 (KnowGraphs).

REFERENCES

[1] C. Aebeloe, I. Keles, G. Montoya, and K. Hose. 2020. Star Pattern Fragments:
Accessing Knowledge Graphs through Star Patterns. CoRR abs/2002.09172 (2020).

[2] C. Aebeloe, G. Montoya, and K. Hose. 2019. A Decentralized Architecture for
Sharing and Querying Semantic Data. In ESWC 2019. 3-18.

[3] C. Aebeloe, G. Montoya, and K. Hose. 2019. Decentralized Indexing over a

Network of RDF Peers. In ISWC 2019. 3-20.

G. Alug, O. Hartig, M. Tamer Ozsu, and K. Daudjee. 2014. Diversified Stress

Testing of RDF Data Management Systems. In ISWC 2014. 197-212.

[5] C. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche. 2013. SPARQL Web-
Querying Infrastructure: Ready for Action?. In ISWC 2013. 277-293.

[6] A.Azzam,].D. Ferndndez, M. Acosta, M. Beno, and A. Polleres. 2020. SMART-KG:
Hybrid Shipping for SPARQL Querying on the Web. In WWW 2020. 984-994.

[7] A. Azzam, R. Taelman, and A. Polleres. 2020. Towards Cost-Model-Based Query
Execution over Hybrid Linked Data Fragments Interfaces. In ESWC 2020. 9-12.

[8] P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti. 2019. Knowledge Graphs:
New Directions for Knowledge Representation on the Semantic Web (Dagstuhl
Seminar 18371). Dagstuhl 8, 9 (2019), 29-111.

[9] M. Cai and M. R. Frank. 2004. RDFPeers: a scalable distributed RDF repository
based on a structured peer-to-peer network. In WWW 2004. 650-657.

[10] J.D. Fernandez, M. A. Martinez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias.
2013. Binary RDF representation for publication and exchange (HDT). J. Web
Semant. 19 (2013), 22-41.

[11] J.D. Fernandez, M. A. Martinez-Prieto, A. Polleres, and J. Reindorf. 2018. HDTQ:

Managing RDF Datasets in Compressed Space. In ESWC 2018. 191-208.

O. Hartig and C. B. Aranda. 2016. Bindings-Restricted Triple Pattern Fragments.

In ODBASE 2016. 762-779.

L. Heling and M. Acosta. 2020. Cost- and Robustness-Based Query Optimization

for Linked Data Fragments. In ISWC 2020. 238-257.

[14] D.Ibragimov, K. Hose, T. Pedersen, and E. Zimanyi. 2016. Optimizing Aggregate
SPARQL Queries Using Materialized RDF Views. In ISWC 2016. 341-359.

[15] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimanyi.
2015. Processing Aggregate Queries in a Federation of SPARQL Endpoints. In
ESWC 2015. 269-285.

[16] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hell-

mann, M. Morsey, P. Kleef, S. Auer, and C. Bizer. 2015. DBpedia - A large-scale,

multilingual knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015),

167-195.

V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neumann. 2015.

How Good Are Query Optimizers, Really? PVLDB 9, 3 (2015), 204-215.

[18] L.F. Mackert and G. M. Lohman. 1986. R* Optimizer Validation and Performance

Evaluation for Distributed Queries. In VLDB 1986. 149-159.

T. Minier, H. Skaf-Molli, and P. Molli. 2019. SaGe: Web Preemption for Public

SPARQL Query Services. In WWW 2019. 1268-1278.

[20] G. Montoya, C. Aebeloe, and K. Hose. 2018. Towards Efficient Query Processing
over Heterogeneous RDF Interfaces. In DeSem Web@ISWC 2018.

[21] G. Montoya, I. Keles, and K. Hose. 2019. Analysis of the Effect of Query Shapes
on Performance over LDF Interfaces. In QuWeDa@ISWC 2019. 51-66.

[22] G. Montoya, M. Vidal, O. Corcho, E. Ruckhaus, and C. Buil Aranda. 2012. Bench-
marking Federated SPARQL Query Engines: Are Existing Testbeds Enough?. In
ISWC 2012. 313-324.

[23] T.Neumann and G. Moerkotte. 2011. Characteristic sets: Accurate cardinality

estimation for RDF queries with multiple joins. In ICDE 2011. 984-994.

Y. Park, S. Ko, Sourav S. Bhowmick, K. Kim, Kijae Hong, and Wook-Shin Han.

2020. G-CARE: A Framework for Performance Benchmarking of Cardinality

Estimation Techniques for Subgraph Matching. In SIGMOD 2020. 1099-1114.

J. Pérez, M. Arenas, and C. Gutiérrez. 2009. Semantics and complexity of SPARQL.

ACM Trans. Database Syst. 34, 3 (2009), 16:1-16:45.

[26] A. Polleres, M. R. Kamdar, J. D. Fernandez, T. Tudorache, and M. A. Musen. 2018.
A More Decentralized Vision for Linked Data. In DeSem Web@ISWC 2018.

[27] M. Saleem, M. Intizar Ali, A. Hogan, Q. Mehmood, and A. Ngonga Ngomo. 2015.

LSQ: The Linked SPARQL Queries Dataset. In ISWC 2015. 261-269.

R. Taelman, J. Van Herwegen, M. V. Sande, and R. Verborgh. 2018. Comunica: A

Modular SPARQL Query Engine for the Web. In ISWC 2018. 239-255.

P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and C. Aranda. 2017. SPAR-

QLES: Monitoring public SPARQL endpoints. Semantic Web 8, 6 (2017), 1049—

1065.

[30] R.Verborgh, M. V. Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester,

G. Haesendonck, and P. Colpaert. 2016. Triple Pattern Fragments: A low-cost

knowledge graph interface for the Web. J. Web Semant. 37-38 (2016), 184-206.

L. Zouaghi, A. Mesmoudi, J. Galicia, L. Bellatreche, and T. Aguili. 2020. Query

Optimization for Large Scale Clustered RDF Data. In DOLAP@EDBT/ICDT 2020.

56-65.

4

[12

(13

[17

[19

[24

[25

[28

[29

[31

	Abstract
	1 Introduction
	2 Background
	2.1 Existing KG Interfaces
	2.2 RDF HDT Compression

	3 Motivating Example
	4 WiseKG
	4.1 Overview
	4.2 Server-Side Cost Model

	5 Query Processing
	5.1 Server-Side Query Processing
	5.2 Client-Side Query Processing

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions and Future Work
	References

