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ABSTRACT

One of the major obstacles that currently prevents the Semantic
Web from exploiting its full potential is that the data it provides
access to is sometimes not available or outdated. The reason is
rooted deep within its architecture that relies on data providers to
keep the data available, queryable, and up-to-date at all times – an
expectation that many data providers in reality cannot live up to
for an extended (or infinite) period of time. Hence, decentralized
architectures have recently been proposed that use replication to
keep the data available in case the data provider fails. Although
this increases availability, it does not help keeping the data up-
to-date or allow users to query and access previous versions of a
dataset. In this paper, we therefore propose ColChain (COLlab-
orative knowledge CHAINs), a novel decentralized architecture
based on blockchains that not only lowers the burden for the data
providers but at the same time also allows users to propose up-
dates to faulty or outdated data, trace updates back to their origin,
and query older versions of the data. Our extensive experiments
show that ColChain reaches these goals while achieving query
processing performance comparable to the state of the art.

ACM Reference Format:

Christian Aebeloe, Gabriela Montoya, and Katja Hose. 2021. ColChain:
Collaborative Linked Data Networks. In Proceedings of the Web Conference
2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3442381.3450037

1 INTRODUCTION

The increasing popularity of the Semantic Web and its Web of Data
has over the past few years led to a rapid increase in the amount of
data published as LinkedOpenData (LOD) – spanning a broad range
of topics, such as life sciences [12], geography [33], and general
knowledge [36]. Such data is made available through either raw
data dumps, SPARQL endpoints, or dereferenceable URIs. Yet, the
current architecture of the Web of Data requires that we rely on the
individual data providers to maintain access to their datasets. While
this is a practical and simple solution, it causes several issues that
significantly limit the general applicability of technologies relying
on the Web of Data as their backbone. As highlighted in several
recent studies [4, 7, 34, 35], providing access to such datasets is a
significant burden for the data providers, which often results in
downtime of public SPARQL endpoints [7, 34]. Another burden for
the data provider is the responsibility to keep the data up to date.
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Current architectures do not support mechanisms to update faulty
or outdated data in a community-driven way. Typically, it is the data
provider publishing a new version of the entire dataset while taking
the old version offline, which then becomes unavailable. However,
for many applications it is helpful to access previous versions of
the dataset and also trace back updates to ensure data quality [2].

In recent years, decentralized architectures [4, 10, 21] have been
proposed to lift some of the burden from the data providers. For
instance, RDFPeers [10] uses a structured overlay over a Peer-to-
Peer (P2P) network that relies on Dynamic Hash Tables (DHTs)
to determine data placement. However, in situations where nodes
frequently leave or join the network, such systems have to go
through a costly adjustment of the overlay and redistribute the data.
Therefore, approaches such as Piqnic [4] rely on unstructured P2P
systems instead, where there is no global control over which peer
stores which portion of the data. Nevertheless, in both flavors of
P2P architectures, replication is used to increase data availability
in case of peer failures. However, none of these systems efficiently
supports updates, in particular not community-driven ones.

Blockchains [15, 27, 32, 37] are chains of data blocks that rep-
resent global ledgers. They rely on the consensus of participating
nodes and facilitate updates by adding new blocks to the chain. A
new block is linked to the existing chain using hashes to prevent
changes without reaching a consensus.

Using blockchain technology for the Web of Data could thus
allow users to collaborate on new updates to the data, keep the
published data up-to-date, and improve its quality by correcting
mistakes in community-driven efforts. However, blockchains typi-
cally replicate the chain on all participating nodes [37] to ensure
immutability and persistance [32]. While this increases availabil-
ity and security, it also requires that every node has to provide
a considerably large amount of resources to store multiple large
knowledge graphs.

In summary, availability as well as writability issues make it
increasingly difficult to trust and rely on the Web of Data since it
is sometimes impossible to (i) access the data, (ii) trace back faulty
data and updates to the origin, (iii) ensure consistent query answers
over longer periods in time by accessing older versions of a dataset,
and (iv) update faulty or outdated data. Hence, in this paper we pro-
pose ColChain (COLlaborative knowledge CHAINs), a system that
increases data availability while enabling users to provide updates
and queries over previous versions. In particular, ColChain divides
the P2P network into smaller communities to increase availability,
store updates in chains, and rely on community-wide consensus
for updates. Furthermore, with the information in the blockchain,
ColChain can trace back updates and access previous versions of
the dataset. As such, similar to Wikidata [36] which lets users pub-
lish manual updates, ColChain relies on user-provided updates to
keep data up to date. InColChain, however, a consensus is required

https://doi.org/10.1145/3442381.3450037
https://doi.org/10.1145/3442381.3450037


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aebeloe et al.

before an update is applied to the chain, making malicious updates
and faulty data less likely. Furthermore, ColChain improves con-
sistency and reproducibility of scientific studies that used query
logs such as LSQ [29] in which queries were executed over older
versions of well-known datasets. ColChain is collaborative, mean-
ing users collaborate on the state of the data by suggesting updates,
whereas updates are consensual, meaning users form a consensus
on each update individually. In summary, this paper makes the
following contributions:
• A formal definition of ColChain, a novel decentralized ar-
chitecture that increases data availability while allowing
nodes to trace back updates to the original source as well as
propose updates to existing data.
• An approach to process SPARQL queries over previous ver-
sions of the datasets published in a ColChain network.
• An extensive evaluation of the performance and overhead of
query processing in a ColChain network using a large-scale
benchmark (LargeRDFBench [17]).

This paper is organized as follows. Section 2 discusses related
work while Section 3 introduces preliminaries. Section 4 presents
ColChain and Section 5 outlines consensual updates. Section 6
describes query processing in ColChain. Section 7 then presents
experimental results and Section 8 concludes the paper.

2 RELATEDWORK

In this section, we discuss approaches to increase the availability
of knowledge graphs and the pitfalls of such approaches. Further-
more, we discuss approaches that can accommodate collaborative
or consensual updates to data fragments and their shortcomings.

2.1 Client-Server Architectures

SPARQL endpoints remain among the most popular interfaces for
querying RDF datasets. SPARQL endpoints are centralized servers
that provide an HTTP interface to process SPARQL queries. How-
ever, such endpoints are expensive to maintain and experience
downtime, leaving the data inaccessible [7, 34]. SaGe [24] increases
the availability of the centralized server by suspending queries after
a fixed time quantum to avoid long-running queries exhausting the
server resources. However, SaGe still processes entire queries on
the server, and can thus still suffer downtime.

Several recent approaches [3, 8, 9, 24, 31, 35] attempt to increase
the availability of servers by lowering their query processing load.
Triple Pattern Fragments (TPF) [35] shift most of the query process-
ing burden from the server to the client, lowering the server load
and increasing availability. This is done by ensuring that the server
only has to process individual triple patterns, whereas joins and
other SPARQL operators are processed by the client. However, while
TPF does decrease the load on the server, it incurs in high network
usage and high client load, and the performance of TPF depends
strongly on factors such as the type of triple pattern and fragment
cardinality [18]. Derivatives of TPF [3, 8, 9, 16, 25] therefore aim
to further reduce the server load by, for example, sending bulks of
previously obtained bindings to the server [16], or increasing the
overall throughput by taking advantage of the characteristics of
the queries [25]. SPF [3] processes star-shaped subqueries on the
server, whereas Smart-KG [8] ships predicate-family partitions to

the client. WiseKG [9] combines the approaches presented by SPF
and Smart-KG and determines dynamically which strategy is the
most cost-efficient for a given subquery. Nevertheless, such systems
still rely on centralized servers that are subject to failure.

Federated systems [1, 26, 30, 31] process queries over multiple
SPARQL endpoints and make it feasible to exploit the resources
of multiple servers during query processing. Nevertheless, since
federated systems rely on a fixed set of SPARQL endpoints that
are subject to failure, they do not provide a reliable solution to the
availability issue. Col-Graph [19] lets consumers create updates
to datasets available over federated sources by using CONSTRUCT
queries to create fragments which they can then change and expose
via SPARQL endpoints. This, however, still requires significant
resources on the part of the consumers.

In any case, systems that rely on a central server or a fixed set
of central servers do not completely address the availability issue;
while reducing the load on the server reduces the chance of server
failure, the data will still be unavailable in the event of failure.

2.2 Decentralized Architectures

Decentralized architectures have over the past few years been gain-
ing attention in the Semantic Web community [4, 8, 22, 24, 35].
Several approaches propose to use Peer-to-Peer (P2P) architectures
to query RDF data [4, 10, 20, 21]. Such approaches rely on the repli-
cation of data over several nodes to increase the availability of the
data. Some of these approaches [10, 20, 21] apply a structured over-
lay such as Dynamic Hash Tables (DHTs) over the network and
enforce data placement. While this can be exploited to make query
processing relatively efficient, it also makes the networks vulnera-
ble to churn (when nodes frequently leave and join the network) as
the overlay then has to be computed again and the data has to be
redistributed each time a node leaves or joins the network. Instead,
[4] proposes an unstructured network, where connections between
nodes are random and replication of data is managed by the data
provider. Processing queries in such a network usually relies on
flooding the network. This is generally inefficient; however, the
query processing performance of such approaches were increased
using decentralized indexes [5, 11].

Decentralized systems allow providers to freely upload data to
the network. By relying on replication of the data, such systems
increase the availability of the data in the event of node failures.
However, there is little to no way for consumers to ensure that
they have access to up-to-date data, process queries over previ-
ous dataset versions, or trace back updates to the original source.
Colledge [23] therefore presented a vision of collaborative networks
where heterogeneous data providers are connected with consumers.
Inspired by this vision, we propose a collaborative network of peers
that accommodates consensual updates to data fragments.

2.3 Blockchains

Blockchains [27] define a global ledger of blocks that all nodes store.
They rely on the consensus of participating nodes on the state of the
ledger. Using blockchains over decentralized knowledge graphs has,
to the best of our knowledge, only briefly been researched [15, 32].
However, such systems require the entire chain to be stored on
all nodes [37], pack structured data into blocks of a fixed size, and
guarantee immutability of the data itself.
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Differently, in relational database systems, multiple previous
studies [6, 13] have proposed partial solutions to these limitations.
BlockchainDB [13] provides a partitioned database layer on top
of an existing blockchain, meaning not all nodes store the entire
dataset. CAPER [6] defines the chain as a directed acyclic graph
in such a way that a node only has to maintain a local view over
the entire chain. These approaches, however, only present partial
solutions to the limitations mentioned above; they either limit node
autonomy, still require the entire chain to be stored on all nodes,
or enforce shared relational schema on each node. Furthermore,
they view the data within a system as one big dataset rather than
several separate datasets owned by different providers.

In this paper, we propose an approach that builds upon
blockchains and unstructured P2P systems that structures the net-
work in communities and puts community-based ledgers on top
of partitioned knowledge graphs such that each node only stores
small subsets of the data and chain.

3 PRELIMINARIES

In this section, we briefly define knowledge graphs followed by the
fundamentals of unstructured P2P networks and indexing in such
network that ColChain builds upon.

3.1 Knowledge Graphs

The standard format for encoding knowledge graphs is RDF1. RDF
structures data as triples describing edges in a knowledge graph, i.e.,
a triple consists of a subject, a predicate, and an object.

Definition 1 (RDF Triple). Given the infinite and disjoint sets𝑈 ,
𝐵, and 𝐿, describing the set of all URIs/IRIs, blank nodes, and literals,
an RDF triple is a triple of the form (𝑠, 𝑝, 𝑜) ∈ (𝑈 ∪𝐵)×𝑈 ×(𝑈 ∪𝐵∪𝐿),
where 𝑠 , 𝑝 , 𝑜 are called the subject, predicate, and object.

A knowledge graph G is a set of RDF triples. The de facto query
language for querying over knowledge graphs is SPARQL2. A
SPARQL query consists of a set of triple patterns.

Definition 2 (Triple Pattern). Given the infinite and disjoint
sets 𝑈 , 𝐵, 𝐿, and 𝑉 , describing the set of all URIs/IRIs, blank nodes,
literals, and variables, a triple pattern is a triple of the form (𝑠, 𝑝, 𝑜) ∈
(𝑈 ∪ 𝐵 ∪𝑉 ) × (𝑈 ∪𝑉 ) × (𝑈 ∪ 𝐵 ∪ 𝐿 ∪𝑉 ).

We say that a triple pattern 𝑝 matches a knowledge graph G iff
there exists a mapping from the variables in 𝑝 to nodes or edges in
G such that applying the mapping to 𝑝 yields an RDF triple in G. A
Basic Graph Pattern (BGP) 𝑃 is a set of (conjunctive) triple patterns.
A SPARQL query consists of BGPs combined with operators. such
as UNION or OPTIONAL. The answer to a BGP 𝑃 over a knowledge
graph G is given as a solution mapping, defined as follows.

Definition 3 (Solution mapping [35]). Given a BGP 𝑃 and a
knowledge graph G, 𝑈 , 𝐵, 𝐿 are the sets of URIs, blank nodes, and
literals in G, and𝑉 is the set of variables in 𝑃 . A solution mapping 𝜇
is a partial mapping 𝜇 : 𝑉 ↦→ (𝑈 ∪ 𝐵 ∪ 𝐿).

Given a triple pattern 𝑡𝑝 and a solution mapping 𝜇, the notation
𝜇 [𝑡𝑝] denotes the triple (pattern) obtained by replacing variables in
1https://www.w3.org/TR/rdf11-concepts/
2https://www.w3.org/TR/sparql11-overview/

𝑡𝑝 according to the bindings in 𝜇. A triple 𝑡 is said to be a matching
triple to 𝑡𝑝 if there exists a solution mapping 𝜇 such that 𝑡 = 𝜇 [𝑡𝑝].
Furthermore, 𝑑𝑜𝑚(𝜇) returns the domain of 𝜇, i.e., the set of vari-
ables that are bound in 𝜇 and 𝑣𝑎𝑟𝑠 (𝑡𝑝) returns the variables in
𝑡𝑝 .

3.2 ColChain Peer-to-Peer Layer

This section defines the basics of unstructured P2P networks and
decentralized indexing [4, 5] that ColChain builds upon.

An unstructured P2P network consists of a set of (possibly het-
erogeneous) interconnected nodes. Each node in the network main-
tains a local datastore (a set of knowledge graphs). Furthermore,
due to the lack of global knowledge in such a network, each node
maintains a partial view over the network, i.e., a set of remote nodes
to interact with. By replicating datasets across several nodes, such
a network can ensure the availability of the data even if the data
provider fails. However, since knowledge graphs today can contain
several billions of triples, and nodes in a P2P network are rela-
tively resource restricted, uploaded knowledge graphs are divided
into smaller disjoint fragments. Fragments can be obtained from a
knowledge graph by applying a fragmentation function, defined as
follows.

Definition 4 (Fragmentation function). A fragmentation
function 𝐹 is a function that maps from a knowledge graph G to a set
of fragments, i.e., 𝐹 : G ↦→ 2G such that ∀𝑓1, 𝑓2 ∈ 𝐹 (G) : 𝑓1 ∩ 𝑓2 = ∅.

An example of a fragmentation function is the very coarse-
granular function 𝐹𝐶 (G) = {G} that does not split up the orig-
inal dataset. Another example is the slightly more fine-granular
predicate-based fragmentation function that creates a fragment for
each predicate in the knowledge graph [4]. This means that frag-
ments can be adapted to various characteristics of each knowledge
graph. Each fragment has an identifier denoted𝑢𝑓 . To achieve repli-
cations of fragments over several nodes, the uploading node selects
a neighbor and propagates the fragment in a chain. Furthermore,
updates to fragments are only possible if the owner node issues an
update and propagates it throughout the network until all replicas
are reached.

To speed up query processing, using routing indexes can help
limiting the number of nodes to query by identifying which nodes
are relevant to a given subquery. As a result, the network overhead
is reduced and query processing performance increased. In order
to process queries over fragments not in the local datastore, nodes
must include indexes for fragments in their distributed index. A
distributed index is defined as follows.

Definition 5 (Distributed Index). Let 𝑛 be a node, N be the
set of nodes within a network, T be the (infinite) set of possible triple
patterns, and F be the (finite) set of fragments that 𝑛 has access to. A
distributed index on 𝑛 is a tuple 𝐼𝑛 = (𝜈, 𝜂) with 𝜈 : T ↦→ 2F and
𝜂 : F ↦→ 2N . For a triple pattern 𝑡 , 𝜈 (𝑡) returns the set of fragments
in F that 𝑡 matches. For a fragment 𝑓 , 𝜂 (𝑓 ) returns the nodes on
which 𝑓 is located.

Definition 6 (Node Mapping). For any BGP 𝑃 and distributed
index 𝐼 , there exists a function𝑚𝑎𝑡𝑐ℎ(𝑃, 𝐼 ) that returns a node map-
ping𝑀 : 𝑇 ↦→ 2N where 𝑇 is the set of triple patterns in 𝑃 , such that
𝑀 (𝑡) returns the indexed nodes that have fragments matching 𝑡 .

https://www.w3.org/TR/rdf11-concepts/
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To include indexes for remote fragments, nodes have to share
particular parts of their distributed index with other nodes. In
order to facilitate this, the nodes compute or download slices for
each fragment not in their local datastore and combine these to
form a distributed index. In simple terms, a slice is the part of a
distributed index that describes a particular fragment. Formally, a
slice is defined as follows.

Definition 7 (Index Slice). Let 𝑓 be a fragment. A slice of 𝑓 , 𝑠𝑓 ,
is a tuple 𝑠𝑓 = (𝜈 ′, 𝜂 ′) where 𝜈 ′(𝑡) returns 𝑓 if there exists a triple in
𝑓 that matches 𝑡 , and 𝜂 ′(𝑓 ) returns the set of all nodes that contain
𝑓 in their local datastore. The function 𝑠 (𝑓 ) returns the slice of 𝑓 .

For instance, in [5], the function 𝜈 ′ within the fragment slice
definition is implemented as a partitioned bitvector that summarizes
the subject and object values of a particular fragment, while 𝜂 ′ is
implemented as a dictionary that maps fragments to the nodes that
have the fragment. Fragment slices can be combined, using the ⊕
operator, into a distributed index, Prefix-Partitioned Bloom Filter
Index in [5]. For example, slices 𝑠𝑓1 = (𝜈 ′1, 𝜂

′
1) and 𝑠𝑓2 = (𝜈

′
2, 𝜂
′
2) are

combined into index 𝐼𝑛 = (𝜈 ′1 ⊕ 𝜈
′
2, 𝜂
′
1 ⊕ 𝜂

′
2).

3 The distributed index
is then used to check the overlap of fragments during query time to
determine which combinations of fragments produce join results.
Distributed indexes are composed of the slices of all the accessible
fragments, i.e., both locally and remotely available fragments. For
a local fragment, the node computes 𝜈 ′ and 𝜂 ′, while for a remote
fragment, the node retrieves 𝜈 ′ and 𝜂 ′ from nodes that have the
fragment locally available. Given a set of slices 𝑆 , the index of 𝑆 ,
𝐼 (𝑆) can be computed as follows.

𝐼 (𝑆) =
(⊕
𝑠∈𝑆

𝑠 .𝜈 ′,
⊕
𝑠∈𝑆

𝑠 .𝜂 ′
)

(1)

Query processing in such a setup uses the following general steps:
(1) Use indexes to determine which nodes to process each triple

pattern over, i.e., retrieve node mappings (Definition 6).
(2) Determine the join order of the triple patterns using, for

example, variable counting or cardinality estimations.
(3) Process each triple pattern in the determined order, at each

step using previously obtained bindings to limit the interme-
diate results.

4 COLCHAIN

In this section, we provide a brief overview of a ColChain network
and the architecture of a ColChain node, followed by a formal
definition of ColChain.

4.1 Design and Overview

In conventional blockchains [27], it is up to the nodes to agree on the
current status of the chain [37]. To allow for consensual updates
to knowledge graphs and to overcome the limitations posed by
blockchains (Section 2.3), we make six design choices:

(1) Knowledge graphs are divided into smaller fragments ac-
cording to a specific fragmentation function4.

3⊕ is defined in [5] as (𝑓 ⊕ 𝑔) (𝑥) = 𝑓 (𝑥) ∪ 𝑔 (𝑥) if 𝑓 and 𝑔 are defined at 𝑥 ;
(𝑓 ⊕ 𝑔) (𝑥) = 𝑓 (𝑥) if 𝑓 is defined at 𝑥 ; (𝑓 ⊕ 𝑔) (𝑥) = 𝑔 (𝑥) if 𝑔 is defined at 𝑥 .
4By default ColChain uses the predicate-based fragmentation function [4]

(2) The network is divided into communities of nodes.
(3) Rather than a common ledger (henceforth called a chain),

there is a distinct chain associated with each fragment.
(4) The chains contain updates to fragments, i.e., inserting or

removing triples, as well as provenance information.
(5) We distinguish between participants (storing fragments and

validating updates) and observers (storing index slices).
(6) Participants are allowed to upload new fragments and pro-

pose updates to fragments within the community; if there is
a community-wide consensus, the updates will be applied.

By dividing the entire network into smaller communities of nodes
(defined in Section 4.2) and using fragmentation functions (Defi-
nition 4), we avoid storing large knowledge graphs on each node.
Furthermore, replicating fragments on participants in a commu-
nity ensures that the data will be available even if the uploading
node fails. By also letting the nodes participate in or observe any
community (participants and observers are defined in Section 4.2)
and join multiple communities at the same time, we ensure that
nodes have the autonomy to decide for themselves what data to
store. Furthermore, by relying on the collaboration of participating
nodes, ColChain supports consensual updates to the published
fragments. Last, by attaching chains of updates (including times-
tamps describing the point in time the update was applied) to the
fragments themselves, nodes are able to roll-back fragments to a
specific point in time and process queries over previous versions.

Since ColChain builds on top of unstructured P2P networks [4,
5], each node has a limited view over the entire network. However,
in contrast to such networks, where the local view consists of a
set of random neighbors, the local view of a ColChain node is
entirely delimited by the communities the node participates in or
observes. That is, a ColChain node is connected to all other nodes
that participate in or observe at least one of the communities that
it participates in or observes. Furthermore, fragments published
within a community are replicated on all participants along with
their update chain and index slice; observers index the fragments
in a community but do not store the fragment itself. Fragments can
only be published in one community. ColChain satisfies ACID;
that is, it is ensured that transactions are atomic, contain only valid
RDF triples, and are serialized in the order of the update chains,
and that fragments are stored in permanent data storage.

Any node can create new communities and upload data to them;
bootstrapping a ColChain network relies on some of the nodes
to create communities and the data providers to upload datasets
to these communities (only participants can upload fragments).
To discover new communities, nodes ask other nodes for a list
of communities they participate in. In order to gain access to the
data within a community, a node has to either participate in (and
replicate the fragments) or observe (and index the fragments) the
community. After a node has joined a community, it expands its
local view over the network to include the other participants and
observers in the community; when leaving a community, it shrinks
its local view to exclude the other nodes in that community but not
in any of the other communities that it participates in or observes.
As such, nodes are able to choose the fragments available in their
local view and the fragments they store, but they do not choose the
nodes that are part of their local view.
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Figure 1: A typical ColChain network.

Figure 1 shows such a typical ColChain network with two
communities (C1 and C2), each giving access to several fragments.
The communities are defined by the nodes that participate in and
observe them and the fragments published within them. Figure 1
visualizes which fragments each community gives access to, as
well as participating and observing nodes. In this example, there
are three nodes (A, B, and C). Node A participates in C1 and ob-
serves C2, while node C participates in C2 and observes C1. Node
B participates in both communities. Since nodes A and C do not
participate in both communities, they do not replicate all fragments
within the network; thus, to answer queries that require data from
both communities, they have to reach out to a node participating
in the community they observe. Despite not participating in both
communities, nodes A and C can reach complete query answers
since they, at least, observe both communities, thus indexing all
fragments and participants.

Updates in ColChain are structured in chains of so-called trans-
actions; a transaction is a set of bundled operations (either addition
or deletion of a triple). While ColChain relies on the consensus
of participants to accept transactions, it allows the owner nodes
of fragments (i.e., the uploading nodes) to enforce transactions
without consensus. Owners can also veto transactions proposed
by participants. Therefore, we use the signature scheme RSA [28];
when proposing a transaction, the node will attach a signature
based on its private key. Participants then validate this signature
with the owner’s public key to validate ownership over fragments.

Figure 2 shows the general architecture of a ColChain node
(Section 4.2 provides a formal definition). Such a node combines
the conventional data storage and blockchain layers in its local
datastore. In particular, each fragment in the local datastore is
directly associated with a chain of updates called a secure hash chain,
i.e., each element in the chain is linked to the previous element
using its hash value [27]. The SPARQL query processor is able to
process full SPARQL queries and triple pattern requests. To process
SPARQL queries, ColChain first uses the index to identify the set
of relevant nodes and processes the query according to the method
described in Section 6. A node has two interfaces; one for users
to issue queries, manage communities, and propose updates, i.e., a
Web interface, and one for communication between nodes, i.e., the
node interface. Each interface communicates with the community
manager to manage communities and updates to fragments, and the
query processor for SPARQL queries and triple pattern requests.

Fragments and Chains
nil

nil

nil

Web Interface

Index

SPARQL Query
Processor

User

Node Interface

Node Mapping
Triple Pattern
Mappings

Local Datastore

SPARQL
Queries

Other Nodes

Triple Pattern
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Community
Manager

Community
Management

Updates

Updates

Transaction
Consensus

Figure 2: Architecture of a ColChain node.

4.2 Formal Definition of ColChain

A ColChain network consists of a set of nodes {𝑛1, 𝑛2, . . . , 𝑛𝑛}.
Each node in such a network contains a local datastore with frag-
ments from zero or more communities.

Definition 8 (Node). A node 𝑛 is a triple 𝑛 = (𝐾, 𝑎𝑛, 𝑢𝑛) where
• 𝐾 = (𝜅𝑛, 𝜌𝑛) is a key-pair such that 𝜅𝑛 is 𝑛’s private key and
𝜌𝑛 is 𝑛’s public key
• 𝑎𝑛 is 𝑛’s address
• 𝑢𝑛 is a valid URI and 𝑛’s unique identifier

Given the definition of a node, we now define the state of a node.

Definition 9 (Node State). Let 𝑛 be a node. 𝑛’s state is S𝑛 =

(Σ, 𝑆, 𝐼𝑛,M) where
• Σ = {𝜎1, 𝜎2, . . . , 𝜎𝑚} and ∀𝜎𝑖 ∈ Σ : 𝜎𝑖 = (X𝑖 , 𝑓𝑖 ) such that
– X𝑖 is a secure hash chain
– 𝑓𝑖 is a fragment
– All updates represented in X𝑖 have been applied to 𝑓𝑖
– All 𝑓𝑗 , 𝑓𝑘 such that 1 ≤ 𝑗, 𝑘 ≤ 𝑚 and 𝑗 ≠ 𝑘 refer to different
(unique) fragments in 𝑛’s local datastore

– 𝜎𝑖 is said to be an entry in 𝑛’s local datastore
• 𝑆 is a set of index slices and ∀𝜎𝑖 ∈ Σ : 𝑠 (𝑓𝑖 ) ∈ 𝑆
• 𝐼𝑛 is 𝑛’s distributed index, 𝐼𝑛 = 𝐼 (𝑆), consisting of index slices
from local and remote fragments
• M is a set of metadata triples

The metadata triples describe a node’s local view over the net-
work. These triples include the metadata of all the communities
that the node participates in or observes (described in Definition 11).
They include, for instance, other nodes that have joined the com-
munity. Since the metadata is structured as a set of triples (i.e., a
knowledge graph), it can be stored and managed similarly to frag-
ments. Note, however, that since the number of metadata triples
is small, it can be stored in memory. Moreover, versioning and
consensus over metadata updates is out of the scope of this paper,
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and therefore there is no update chain associated to the metadata.
Note also that the set of index slices 𝑆 might contain slices from
fragments not included in the node’s local datastore. This is the
case for fragments in communities observed by the node.

Definition 10 (Community). A community C contains two sets
of nodes called participants and observers (defined in Definitions 12
and 13) and a set of fragments, each owned by a node, i.e., C =

(𝑁, 𝐹C, 𝜐,𝑢C) where
• 𝑁 = (𝑃C,𝑂C) such that 𝑃C and𝑂C are the sets of participants
and observers, respectively
• 𝐹C is a set of fragments
• 𝜐 is an ownership-mapping function such that ∀𝑓 ∈ 𝐹C :
𝜐 (𝑓 ) = 𝜌 𝑓 where ∃𝑛 ∈ 𝑃C

⋃
𝑂C : 𝜌 𝑓 = 𝜌𝑛

• 𝑢C is a valid URI and C’s unique identifier

The ownership-mapping function 𝜈 maps fragments to the pub-
lic key of the owner node. 𝜈 is used for validating ownership over
fragments during consensus (Section 5.2). Given a fragment 𝑓 , as-
sume that 𝑢𝑓 is a valid URI and a unique identifier for 𝑓 . We now
define the state of a community as follows5.

Definition 11 (Community State). Let C be a community. C’s
state is SC = (Φ,M) where
• Φ = {𝜙1, 𝜙2, . . . , 𝜙𝑚} and ∀𝜙𝑖 ∈ Φ : 𝜙𝑖 = (X𝑖 , 𝑓𝑖 )
– X𝑖 is a secure hash chain
– 𝑓𝑖 is a fragment
• M is a set of metadata triples such that
– ∀𝑛 ∈ 𝑃C : ⟨𝑢C, cc : participant, 𝑢𝑛⟩ ∈ M
– ∀𝑛 ∈ 𝑂C : ⟨𝑢C, cc : observer, 𝑢𝑛⟩ ∈ M
– ∀𝑓 ∈ 𝐹C : ⟨𝑢C, cc : fragment, 𝑢𝑓 ⟩ ∈ M and
⟨𝑢𝑓 , cc : author, C.𝜐 (𝑓 )⟩ ∈ M

The metadata of a community,M, contains triples detailing all
the participating and observing nodes, as well as the fragments
within that community and their ownership. Upon joining a com-
munity, nodes add these triples to their local metadata,i.e., nodes
expand their local view of the network.

Nodes can both participate in or observe a community. Given
the definition of a community state, we thus define participants
and observers as follows.

Definition 12 (Participant). Given a community C and a node
𝑛, 𝑛 is said to be a participant in C iff for all 𝜙 = (X, 𝑓 ) ∈ SC .Φ it
is the case that (X, 𝑓 ) ∈ S𝑛 .Σ, 𝑠 (𝑓 ) ∈ S𝑛 .𝑆 , and ∀𝑡 ∈ SC .M : 𝑡 ∈
S𝑛 .M.

A participant is a node that, in its local datastore, contains repli-
cas of the fragments and chains within the community. Note that a
node is not limited to participate in just one community. Instead,
nodes are free to participate in any community, and as many as
they like. By participating in communities, nodes gain more effi-
cient access to the data provided by that community since it is then
available from the local datastore. Furthermore, to avoid routing
attacks, and to still ensure complete query processing, nodes can
also observe communities. This gives them access to the data within
the community without having to replicate all the fragments.

5The prefix cc : describes the URI http://colchain.org/properties#.

Definition 13 (Observer). Given a community C and a node 𝑛,
𝑛 is said to be an observer in C iff for all 𝜙 = (X, 𝑓 ) ∈ SC .Φ it is the
case that 𝑠 (𝑓 ) ∈ S𝑛 .𝑆 , and ∀𝑡 ∈ SC .M : 𝑡 ∈ S𝑛 .M.

Even though an observer does not store replicas of the fragments
itself, it can still access the fragments during query processing
by sending requests to community participants. This is done by
downloading the index slice of the fragments within the community,
and include those in the index. During query processing, the node
will then ask participants for the relevant data based on the node
mapping provided by the index. Observers are thus able to obtain
complete query answers since observing communities requires far
less resources than participating.

5 CONSENSUAL UPDATES

In this section, we outline how ColChain enables consensual up-
dates. We provide a formalize updates to fragments and discuss our
approach for reaching consensus on proposed updates.

5.1 Updates

In ColChain, there are two types of updates that need to be ac-
counted for; updates to fragments (for participants) and updates to
the metadata (e.g., when a node leaves a community). ColChain
represents updates to both fragments or metadata as transactions
that consist of operations. To provide access to previous dataset
versions, ColChain organizes and stores the transactions done to
a fragment over time as a chain. However, since providing access
to previous network configurations (e.g., former community mem-
bers) is out of the scope of this paper, ColChain does not keep
the transactions done to the metadata. For ease of presentation, we
therefore focus on updates to fragments in this section. Operations
can be insertions or deletions and thus updates are in this paper de-
scribed as deletions followed by insertions. Formally, an operation
is defined over a fragment as follows.

Definition 14 (Operation). An operation 𝑜 over a fragment 𝑓
is a tuple 𝑜 = (𝛼, 𝑡), where 𝛼 describes whether the operation is an
insertion (𝛼 = +) or deletion (𝛼 = −) of a triple, and 𝑡 is the triple that
is to be inserted or deleted.

Applying an operation 𝑜 to a fragment 𝑓 , denoted 𝑜 (𝑓 ), results in
a state where the fragment either does not contain the triple (if 𝛼 =

−), or contains the triple (if 𝛼 = +). An operation thus represents a
change to a fragment in the local datastore. As operations typically
occur in sets, we combine updates into transactions. Transactions
are defined as follows.

Definition 15 (Transaction). A transaction 𝛾 is a triple 𝛾 =

(𝑂, 𝑓𝑖 , 𝜆) where 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑛} is a set of operations, 𝑓𝑖 is a
fragment, and 𝜆 = (𝑢𝑛, 𝛼𝛾 , 𝜄) is provenance information, where 𝑢𝑛 is
the unique identifier of the node proposing the transaction 𝑛, 𝛼𝛾 is a
signature obtained using 𝑛’s private key, and 𝜄 is a timestamp.

Note that while blocks in conventional blockchains [27] have a
fixed size, transactions in ColChain can have varying sizes, i.e.,
any number of operations. This allows for more efficient storage of
updates in situations where updates to knowledge graphs contain
different numbers of operations.
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Applying all operations in a transaction 𝛾 to a fragment 𝑓 is
denoted by [[𝑓 ]]𝛾 . Notice also that a transaction can be applied to
the metadata triples. This is denoted [[M]]𝛾 .

Table 1: Fragment 𝑓

Fragment 𝑓

⟨a, p1, c⟩ ⟨𝑎, 𝑝2, 𝑑⟩ ⟨𝑏, 𝑝2, 𝑑⟩
⟨𝑏, 𝑝3, 𝑒⟩ ⟨𝑐, 𝑝1, 𝑑⟩ ⟨𝑐, 𝑝3, 𝑎⟩
⟨𝑓 , 𝑝4, 𝑑⟩ ⟨𝑑, 𝑝4, 𝑓 ⟩ ⟨𝑒, 𝑝5, 𝑔⟩

Consider fragment 𝑓 in Table 1 and the following transaction:

𝛾 = ({(+, ⟨𝑎, 𝑝1, 𝑏⟩), (−, ⟨𝑎, 𝑝1, 𝑐⟩)}, 𝑓 , 𝜆)
The result of applying the transaction 𝛾 to the fragment 𝑓 , [[𝑓 ]]𝛾 ,
is the fragment that exchanges the triple ⟨𝑎, 𝑝1, 𝑐⟩ with ⟨𝑎, 𝑝1, 𝑏⟩,
and can be seen in Table 2.

Table 2: The result after applying 𝛾 to 𝑓 , [[𝑓 ]]𝛾
Fragment [[𝑓 ]]𝛾
⟨a, p1, b⟩ ⟨𝑎, 𝑝2, 𝑑⟩ ⟨𝑏, 𝑝2, 𝑑⟩
⟨𝑏, 𝑝3, 𝑒⟩ ⟨𝑐, 𝑝1, 𝑑⟩ ⟨𝑐, 𝑝3, 𝑎⟩
⟨𝑓 , 𝑝4, 𝑑⟩ ⟨𝑑, 𝑝4, 𝑓 ⟩ ⟨𝑒, 𝑝5, 𝑔⟩

State transition functions describe how ColChain allows for
fragment updates. Transition functions are defined for fragment
updates (on participants) as well as fragment slice updates (on both
participants and observers). These functions are, upon achieved
consensus (described in Section 5.2), triggered on participants and
observers. First we define the transition function for the fragments
in a state as follows.

Definition 16 (Fragment Transition Function). Given a
transaction 𝛾 , a state S𝑛 of a node 𝑛, and a secure hash function
𝐻 , the fragment transition function is for all 𝜎𝑖 = (X𝑖 , 𝑓𝑖 ) ∈ S𝑛 .Σ
defined as follows.

𝜏Σ (𝜎𝑖 , 𝛾) = (𝜏X (X𝑖 , 𝛾), 𝜏𝑓 (𝑓𝑖 , 𝛾)) (2)

Where

𝜏X (X𝑖 , 𝛾) = X𝑖 ∪ {𝑥𝑖+1} s.t.
𝑥𝑖+1 = (ℎ,𝛾)
ℎ = (𝐻 (𝛾), 𝑦)

𝑦 = {𝐻 (𝑥 𝑗 ) | 𝑗 < 𝑖}

(3)

And

𝜏𝑓 (𝑓𝑖 , 𝛾) = [[𝑓𝑖 ]]𝛾 (4)

The value ℎ in Equation 3 can be seen as a header that contains
a hash value of the transaction and links to previous headers (and
thus transactions), forming a chain. Since the metadata M is a
set of triples, applying a transaction 𝛾 toM is given by applying
𝜏𝑓 (M, 𝛾) (𝜏𝑓 as defined in Equation 4) on the nodes within the
community. Given a transaction 𝛾 and a state S𝑛 of a node 𝑛, we
therefore define a slice transition function as follows.

Definition 17 (Slice Transition Function). Given a transac-
tion 𝛾 = (𝑂, 𝑓𝑖 , 𝜆) and a state S𝑛 of a node 𝑛 such that 𝑠𝑓𝑖 ∈ S𝑛 .𝑆 ,
the slice transition function is defined as follows.

𝜏𝑆 (𝑠𝑓𝑖 , 𝛾) = 𝑠 ( [[𝑓𝑖 ]]𝛾 ) (5)

After a transaction is applied to a fragment, the participants
compute a new index slice for the fragment using the slice transition
function. Afterwards, participants and observers replace the slice
of that fragment with the new slice in their distributed indexes.

5.2 Consensus Protocol

To obtain a consensus on a proposed update, ColChain relies on
the participants to actively vote on a transaction. This means that
a transaction is not applied until a majority of participants accepts.
While this could take some time (since users are active at different
times), it prevents faulty or malicious updates from being applied.
Furthermore, the data provider can enforce updates to the fragment
(i.e., circumvent the majority).

Consensus is reached by a majority of nodes accepting the trans-
action. The acceptance protocol of a participant is defined as follows.
Let 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝛼𝛾 , 𝜌 𝑓 ) be a function that returns true iff the signature
𝛼𝛾 matches the public key 𝜌 𝑓 , i.e., if 𝛾 was signed by the owner
of 𝑓 , and 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝛾) be a function that returns true iff the user
actively accepts the transaction. The acceptance protocol uses the
following steps:

(1) Let 𝛾 = (𝑂, 𝑓 , 𝛼𝛾 ), M be the set of metadata triples of 𝑛,
S𝑛 .M, and 𝜎𝑖 = (X𝑖 , 𝑓𝑖 ) ∈ S𝑛 .Σ be the unique state entry
such that 𝑢𝑓𝑖 = 𝑢𝑓 . Find ⟨𝑢𝑓 , cc : author, 𝜌 𝑓 ⟩ ∈ M.

(2) If 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝛼𝛾 , 𝜌 𝑓 ) = true, accept 𝛾 on 𝜎𝑖 .
(3) If 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝛾) = true, accept 𝛾 on 𝜎𝑖 .
(4) If 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝛼𝛾 , 𝜌 𝑓 ) = false and 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝛾) = false, reject 𝛾

on 𝜎𝑖 .

Participant Participant Participant Observer

𝑎𝑐𝑐𝑒𝑝𝑡 (𝛾,𝑛1 )

node 𝑛1 node 𝑛2 node 𝑛3 node 𝑛4node 𝑛0

𝜏Σ (𝜎𝑖 ,𝛾 )

𝛾

PoO Commit Accept Reject

Participant

𝑎𝑐𝑐𝑒𝑝𝑡 (𝛾,𝑛2 ) 𝑎𝑐𝑐𝑒𝑝𝑡 (𝛾,𝑛3 )

𝜏Σ (𝜎𝑖 ,𝛾 ) 𝜏Σ (𝜎𝑖 ,𝛾 )

𝜏𝑆 (𝑠𝑓 ,𝛾 ) 𝜏𝑆 (𝑠𝑓 ,𝛾 ) 𝜏𝑆 (𝑠𝑓 ,𝛾 ) 𝜏𝑆 (𝑠𝑓 ,𝛾 )

Figure 3: Example flowchart of transaction proposition, val-

idation and application.

In aColChain network, similarly as in [6], transactions are prop-
agated through the community as shown in Figure 3. First, a node
proposes a candidate transaction and calls the acceptance method
on each participant in the community.6 Then, each participant val-
idates the transaction and forwards the result of 𝑎𝑐𝑐𝑒𝑝𝑡 (𝛾, 𝑛) to
all the other participants. By receiving the acceptance messages
from all other participants, nodes are able to, at all times, locally
determine when a majority has accepted. In this example, two out
of three participants accept the transaction and thus a consensus
is reached. After reaching consensus, each participant triggers its
6community participants and their addresses are available in the node’s metadata
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state transition functions with the proposed transaction, thereby
committing the transaction. Last, the participant that proposed the
update forwards the updated index slice to the observers which
will, upon receiving an accept message from a majority of nodes,
update their index accordingly. This way, changes to the fragments
within the community can be collaboratively determined.

Relying on a majority of the users to actively accept transactions
creates a practical limitation on the number and size of transactions
a user can vote on in reality. This limitation could be addressed
by using different consensus protocols in different situations that
make active participation of users more scalable, e.g., by detecting
non-trivial changes in large updates or malicious updates. This is
part of our future work (Section 8).

6 QUERY PROCESSING

In line with the state of the art [4, 5], a ColChain node processes
SPARQL queries by requesting reachable fragments that match the
query’s triple patterns, while operations like joins are evaluated
locally on the querying node. In line with [4, 16] we attach the
bindings from previously evaluated triple patterns to the requests
when evaluating subsequent triple patterns. This is to reduce the
cardinality of the retrieved fragment, i.e., sizes of intermediate re-
sults. Furthermore, by using the node’s distributed index (as defined
in Definition 5), it is possible to limit the number of nodes to query
for each triple pattern and avoid having to flood the network, i.e.,
forwarding requests through several layers of neighbors, which
is the basic strategy in unstructured P2P networks [4]. Similarly
to [4], a ColChain node has a limited view over the entire net-
work. However, differently from [4], this view is not random but
determined by the communities the node has joined.

Recall in Definition 6 the function𝑚𝑎𝑡𝑐ℎ(𝑃, 𝐼 ) for a BGP 𝑃 and
index 𝐼 . The function returns a node mapping 𝑀 that, given a
triple pattern 𝑡𝑝 ,𝑀 (𝑡𝑝), returns the set of nodes 𝑁 with relevant
fragments, i.e., fragments that 𝑡𝑝 matches. Each node 𝑛 contains
a selector function that formalizes how triple pattern requests are
processed over an entry in 𝑛’s local datastore. Since ColChain
bulks bindings from previously evaluated triple patterns, we define
a selector function in line with [16] that takes these bindings into
account. Furthermore, to allow for queries over previous dataset
versions, we extend the selector function to also take into account
a timestamp 𝜄. Let 𝜎𝑖 = (X𝑖 , 𝑓𝑖 ) be an entry in 𝑛’s local datastore.
𝜄 (𝜎𝑖 ) denotes the fragment obtained by reversing the operations
in the transactions encoded within X𝑖 with a timestamp greater
than or equal to 𝜄, i.e., 𝛾 𝑗 with 𝛾 𝑗 .𝜆.𝜄 ≥ 𝜄, i.e., the fragment that was
available at 𝜄. The selector function is defined as follows.

Definition 18 (Selector Function). Given a node 𝑛, a triple
pattern 𝑡𝑝 , a finite set of distinct solution mappings Ω, and a times-
tamp 𝜄, the fragment-based bindings-restricted triple pattern selector
for 𝑡𝑝 , Ω, and 𝜄, denoted 𝑠 (𝑡𝑝,Ω,𝜄) , is for every entry 𝜎 in 𝑛’s local
datastore defined as follows.

𝑠 (𝑡𝑝,Ω,𝜄) (𝜎) =


{𝑡 ∈ 𝜄 (𝜎) | 𝑡 ∈ 𝜄 (𝜎) ∧ ∃𝜇 : 𝑡 = 𝜇 [𝑡𝑝] if Ω = ∅
{𝑡 ∈ 𝜄 (𝜎) | 𝑡 ∈ 𝜄 (𝜎) ∧ ∃𝜇 : 𝑡 = 𝜇 [𝑡𝑝]∧

∃𝜇 ′ ∈ Ω : 𝜇 ′ ⊆ 𝜇} otherwise.

In line with the state of the art, we apply pagination [16, 35],
i.e., we group the results into reasonably sized pages (e.g., 100

results per page in [35]) to avoid excessive data transfer. For ease
of presentation though, we focus on the case where all answers
fit into a single page. Given a node 𝑛, a triple pattern 𝑡𝑝 , a set of
solution mappings Ω, and a timestamp 𝜄, we define two additional
functions that call the selector function (Definition 18) to process
triple pattern requests: 𝑛𝑐 (𝑡𝑝,Ω, 𝜄) and 𝑛𝑝 (𝑡𝑝,Ω, 𝜄).
• 𝑛𝑐 (𝑡𝑝,Ω, 𝜄) returns a cardinality estimation of the result of
invoking 𝑠 (𝑡𝑝,Ω,𝜄) on 𝑛.
• 𝑛𝑝 (𝑡𝑝,Ω, 𝜄) returns the result of invoking 𝑠 (𝑡𝑝,Ω,𝜄) on 𝑛.

Note that in some cases nodes will process triple patterns over
fragments available in the local datastore. In this case, the returned
node 𝑛 from the node mapping is the local node, and the node does
not actually perform a request to itself; rather it just processes the
triple pattern locally and forwards the result to the query processor.

Algorithm 1 Evaluate a BGP on a ColChain node

Input: A BGP 𝑃 = {𝑡𝑝1, . . . , 𝑡𝑝𝑛}; a node 𝑛; a timestamp 𝜄; a
set of solution mappings Ω; a node mapping𝑀
Output: A set of solution mappings

1: function evaluateBGP(𝑃 ,𝑛,𝜄,Ω = ∅,𝑀 = ∅)
2: if 𝑀 = ∅ then𝑀 ←𝑚𝑎𝑡𝑐ℎ(𝑃,S𝑛 .𝐼𝑛);
3: for all 𝑡𝑝𝑖 ∈ 𝑃 do

4: 𝑐𝑛𝑡𝑖 ← Σ𝑛1∈𝑀 (𝑡𝑝𝑖 )𝑛
𝑐
1 (𝑡𝑝𝑖 ,Ω, 𝜄);

5: if 𝑐𝑛𝑡𝑖 = 0 then return ∅;
6: 𝑡𝑝𝜖 ← 𝑡𝑝𝑘 where 𝑡𝑝𝑘 ∈ 𝑃 and 𝑐𝑛𝑡𝑘 ≤ 𝑐𝑛𝑡 𝑗∀𝑡𝑝 𝑗 ∈ 𝑃 ;
7: 𝜙𝜖 ← ⋃

𝑛1∈𝑀 (𝑡𝑝𝜖 ) 𝑛
𝑝

1 (𝑡𝑝𝜖 ,Ω, 𝜄);
8: Ω𝜖 ← Ω ⊲⊳ {𝜇 | 𝑑𝑜𝑚(𝜇) = 𝑣𝑎𝑟𝑠 (𝑡𝑝𝜖 ) and 𝜇 [𝑡𝑝𝜖 ] ∈ 𝜙𝜖 };
9: 𝑃 ′ ← 𝑃 \ {𝑡𝑝𝜖 };
10: if 𝑃 ′ = ∅ then return Ω𝜖 ;
11: return 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐵𝐺𝑃 (𝑃 ′, 𝑛, 𝜄,Ω𝜖 , 𝑀);

Given a BGP 𝑃 and timestamp 𝜄 specifying which fragment ver-
sions to process 𝑃 over, Algorithm 1 defines a recursive algorithm
to process 𝑃 over the fragments reachable for a node 𝑛 (i.e., covered
by 𝑛’s index). First, we obtain the node mapping (Section 3, Defi-
nition 6) from 𝑛’s index (Section 3, Definition 5) in line 2. Recall
that a node mapping given a triple pattern 𝑡𝑝 , 𝑀 (𝑡𝑝), returns a
set of nodes that contain relevant fragments to 𝑡𝑝 . Using the pre-
viously defined function 𝑛𝑝 (𝑡𝑝,Ω, 𝜄), we then obtain a cardinality
estimation for each triple pattern by summing the cardinality es-
timations obtained by each node specified by the node mapping
we found in the previous step (lines 3-5). The triple pattern with
lowest cardinality estimation is then evaluated first by sending it to
all sources specified by the node mapping to obtain the bindings for
this triple pattern (line 7). The output results from previous triple
patterns are then joined with the bindings just obtained (line 8).
Last, the evaluated triple pattern is removed from the BGP (line
9) and, if there are any remaining triple patterns, the algorithm is
called recursively with the new BGP and set of bindings (line 11).

7 EXPERIMENTAL EVALUATION

We compare ColChain with state-of-the-art decentralized archi-
tectures for sharing and querying semantic data in terms of perfor-
mance. Moreover, we investigate the impact of community sizes
on ColChain’s performance and updates and study ColChain’s
performance when processing queries against previous versions.
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7.1 Implementation Details

A prototype of ColChain was implemented in Java 87. Both the
Web interface and node interface (Figure 2) are implemented as
Java 8 Servlets using Jetty8. The query processor is implemented
as an extension to Apache Jena9 and can process SPARQL queries
that Jena can process (e.g., with UNION and OPTIONAL). Our imple-
mentation uses Prefix-Partitioned Bloom Filter indexes from [5]
as distributed index (𝐼𝑛) and the predicate-based fragmentation
function from [4]. The fragments themselves are stored as separate
HDT files [14] that allow for efficient processing of triple patterns.
The chains of transactions are stored separately from the fragments
and if possible in main memory.

7.2 Experimental Setup

Datasets and Queries. We use the datasets and queries from the ex-
tended LargeRDFBench [17] benchmark, which comprises 13 inter-
connected datasets that totals over 1 billion triples. LargeRDFBench
includes 40 SPARQL queries divided into 5 different categories: Sim-
ple (S), Complex (C), Large Data (L), and Complex and Large Data
(CH). We generated chains of 1, 10, and 100 transactions for each
fragment. Each transaction has a random number of operations
between 10 and 100. We assessed the correctness of query answers
by comparing the output to the results obtained using the same
data and queries in a standard triple store. In our experiments, all
queries that finished returned complete results.

Experimental Setup. We ran our experiments on a network with 128
nodes. We created 4004 fragments from the LargeRDFBench data in
total and 200 communities each with between 10 and 31 fragments
(randomly assigned). Nodes are assigned randomly to participate
and observe each of the communities. The nodes observe all commu-
nities they do not participate in, i.e., all the fragments are reachable
from all the nodes, and therefore complete query results can be ob-
tained during query processing. We compare the following systems:
(i) an unstructured P2P network with flooding [4] (Piqnic), (ii)
the same system with decentralized indexes [5] (Piqnic𝑃𝑃𝐵𝐹 ), and
(iii) ColChain using the same indexes as Piqnic𝑃𝑃𝐵𝐹 . In Piqnic,
fragments are replicated randomly throughout the network and
connections are random. We match the replication factor in Piqnic
and Piqnic𝑃𝑃𝐵𝐹 (i.e., the number of replicas per fragment) with the
number of participants in each community for ColChain. For each
experiment, we ran the 40 queries in the benchmark sequentially
at three random nodes and report the average over the three runs.

Parameters. To test how the characteristics of a ColChain network
affect performance and update overhead time, we ran experiments
with 5, 10, and 20 participants per community. Moreover, to assess
ColChain in a more realistic setup with varying community sizes,
we ran experiments using a Zipfian distribution of the community
sizes, i.e., the most popular community has all 128 nodes as partici-
pants, after which the 𝑛th most popular community has 128/𝑛, or at
least one, participants. In the versioning experiments, we assessed
how scalable ColChain is for different chain lengths (i.e., the num-
ber of transactions to roll back for a single query) when processing

7The prototype is available at https://github.com/ColChain/ColChain-Java.
8https://www.eclipse.org/jetty/
9https://jena.apache.org/

queries over previous versions. Specifically, we processed queries
with chain lengths of 1, 10, and 100.

Hardware Configuration. We ran, for each P2P system, 128 nodes
on a virtual machine (VM) with 128 vCPU cores with a clock speed
of 2.5GHz, 64KB L1 cache, 512KB L2 cache, 8192KB L3 cache and
2TB main memory. Since all clients are run concurrently on the
same machine, they are limited to use 1 core and 15GB memory,
and the connection between them is limited to 20 MBit/sec.

Evaluation Metrics. We measure the following metrics:
• Query Execution Time (QET): The amount of time (in mil-
liseconds) it takes to obtain the full query answer.
• Query Response Time (QRT): The amount of time (in millisec-
onds) it takes to obtain the first query answer.
• Update Overhead Time (UOT): The amount of time (in mil-
liseconds) elapsed from when an update is proposed to
when it is committed on all targets (assuming a consensus is
reached instantly).
• Version Materialization Time (VMT): The amount of time
(in milliseconds) it takes to materialize previous versions of
requested fragments.
• Number of Exchanged Messages (NEM): The number of mes-
sages exchanged between nodes.
• Number of Transferred Bytes (NTB): The amount of data trans-
ferred (in bytes) between nodes.

Software Configuration. The number of results that each system is
allowed to attach to requests is set to |Ω | = 30 (Section 6), and the
page size to 100 (i.e., each system can only send 100 results at a
time). The timeout is set to 1,200 seconds (20 minutes). For Piqnic,
we use the following values (as recommended by [4]). Time-to-Live
(number of hops): 5, Number of Neighbors: 5.

7.3 Experimental Results

Due to space limitations, we will only show the most interesting
experimental results in this section. The full experimental results
are available at https://relweb.cs.aau.dk/colchain.

Query Processing Performance. Figure 4 shows the query ex-
ecution time (QET) for each system over the queries in the C
and CH query categories. ColChain has similar performance to
Piqnic𝑃𝑃𝐵𝐹 . This is due to the fact that the characteristics of a
ColChain network are similar to that of a Piqnic network; in our
setup, the number of participants in a community was matched
to the replication factor in Piqnic. As such, since ColChain and
Piqnic𝑃𝑃𝐵𝐹 use the same indexing scheme, they have similar over-
all performance. Only a few queries, such as C3 and CH7, show a
slight difference in execution time for ColChain and Piqnic𝑃𝑃𝐵𝐹 .
This is due to the particular topology of the networks and that the
randomly chosen nodes have different fragments available in the
local datastore, e.g., for CH7, one of the Piqnic𝑃𝑃𝐵𝐹 nodes was able
execute the query issuing just 2,058 triple pattern requests, while all
the ColChain nodes required at least 2,423 triple pattern requests
to gather the fragments that were not available locally at the issuing
node. The decerease in execution time this caused the particular
node to have was significant enough to still be visible even with the
value averaged over three separate nodes. Furthermore, ColChain
and Piqnic𝑃𝑃𝐵𝐹 have better query processing performance across

https://github.com/ColChain/ColChain-Java
https://www.eclipse.org/jetty/
https://jena.apache.org/
https://relweb.cs.aau.dk/colchain
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Figure 4: Execution time for queries in the C and CH categories for Piqnic, Piqnic𝑃𝑃𝐵𝐹 , and ColChain (y-axis in log scale).

(a) Transferred KBs (b) Messages (c) Response Time

Figure 5: Number of transferred bytes (NTB) in KBs, number of exchanged messages (NEM), and response time (QRT) for each

approach over the different query categories excluding queries that timed out (y-axis in log scale).

all queries compared to Piqnic. This is consistent across not just
the C and CH query categories, but all remaining query categories
in our experiments as well. ColChain and Piqnic𝑃𝑃𝐵𝐹 timed out
for 5 out of the 40 queries, and Piqnic timed out for 14 out of the
40 queries. The timeouts were in the L and CH query categories
and were queries for which even federated systems timed out [17].

Figure 5 shows, for each query category and over each compared
system, the number of transferred bytes (Figure 5a), number of
exchanges messages (Figure 5b), and the query response time (Fig-
ure 5c). Both ColChain and PIQNIC𝑃𝑃𝐵𝐹 generate significantly
less network load than PIQNIC. This is due to the ability to accu-
rately determine which other nodes to query for specific data, thus
removing the need to flood the network. A similar trend can be
observed in Figure 5b where ColChain and PIQNIC𝑃𝑃𝐵𝐹 incur
significantly fewer exchanged messages than Piqnic. As a result,
ColChain is able to maintain a comparatively low response time
similar to PIQNIC𝑃𝑃𝐵𝐹 ’s (Figure 5c).

Overall, our results clearly show that ColChain’s performance
is comparable to state-of-the-art systems without incurring in any
additional network load. This was expected since improving query
processing performance was not part of our contributions, and
emphasizes that the additional functionality of consensual updates
and query processing over previous versions does not decrease the
performance when comparing to state-of-the-art systems.

Impact of the Size of the Communities. Figure 6 shows the
query execution time (QET) for each query in the S query cate-
gory over each community size. It is clear that in most cases the
networks with larger community sizes show slightly better per-
formance overall. This is due to the fact that communities with
larger numbers of participants have more fragments replicated at
each node, and therefore executing a query naturally incurs in a
lower number of requests. In our experiments, the network with
five participants per community has between 47 and 332 fragments

per node, while the network with 20 participants per community
has between 408 and 885. There were a few exceptions, e.g., queries
S2 and S5, but this comes naturally from the fact that the additional
replicas were placed randomly and were not necessarily located
at the node issuing the query. In all cases, the network with five
participants in each community is the slowest, and for some queries
this margin is quite significant (e.g., up to 7 times slower for S9
compared to the setup with 20 participants in each community).
These results are consistent across all query categories and show
that there is a correlation between the sizes of the communities and
the performance. Finally, we have also considered a configuration
where the number of the participants per community varies ac-
cording to a Zipfian distribution. For this configuration, the results
show that query processing is less efficient than in the setup where
all communities have 10 or 20 participants. This is the case since in
a Zipfian distribution there will on average be fewer participants
per communities, resulting in fewer fragments locally available
on each node. In fact, in our experiments, nodes have between 19
and 258 fragments available, which is significantly less than in any
other setup. Still, the performance is similar to the setup with 5
participants. Moreover, for a few queries such as S1 and S9, the per-
formance is close to the setup with 20 participants. This is a result
of many of those fragments being part of a popular community, i.e.,
there is a high likelihood of such fragments being available in the
local datastore of the node issuing the query.

Cost of Processing Queries over Previous Dataset Versions.

In order to studyColChain’s performancewhen processing queries
against previous dataset versions, we created update chains with 1,
10, and 100 transactions per fragment. We applied these updates to
the fragments and saved only the latest version in the local data-
store. All queries were evaluated over the initial version of the
datasets by rolling back the entire chain and computing the ini-
tial version during query processing. Figures 7a-7b shows, for each
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Figure 6: Execution time for queries in the S query category for different community sizes (y-axis in log scale).

(a) Execution Time
(b) Materialization Time

(c) Update Overhead Time

Figure 7: Execution and materialization time for the versioning experiments excluding queries that timed out (y-axis in log
scale) and update overhead time over different community sizes (log scale).

query category the query execution time (Figure 7a) and the version
materialization time (Figure 7b). Our experiments show that while
processing queries over a previous dataset version clearly takes
more time, the length of the chain (i.e., number of transactions to
roll back) actually has very little impact. This is a sub-linear effect
since it is not necessary to materialize each version in between the
current version and the target version; rather it is sufficient to sim-
ply combine all the operations in the transactions and materialize
the target version by rolling back those operations on the current
version. Moreover, it is clearly visible that the materialization time
(Figure 7b) does not significantly vary with the number of trans-
actions; instead, it is mostly impacted by the query category. One
of the main differences between the different query categories is
the number of transferred bytes. In particular, while the S query
category requires at most the transfer of 856 kilobytes, the L query
category requires at most the transfer of 154 megabytes. Clearly,
the materialization time is the main component of the query exe-
cution time (cf. Figure 7a and Figure 7b), where up to 94% of the
materialization time is spent in decompressing the fragment triples
and compressing the triples in the fragment’s target version. This
suggests that while HDT favors efficient processing of triple pattern
requests, using this encoding in the context of writable linked data
has clear limitations. Additionally, our experimental setup with
fragments of up to 10 million triples clearly exacerbates these limi-
tations. Nevertheless, our experiments still show that it is possible
to process queries over previous dataset versions within a relatively
low query timeout, i.e., 31 out of 40 queries were executed within a
timeout of 20 minutes; all timed out queries are either queries in the
L and CH query groups, resulting in larger fragments to be materi-
alized and therefore longer materialization time, or including triple
patterns with variables as predicates, resulting in a large number
of fragments to be materialized. Notice that these queries time out
even when processed by state-of-the-art federated systems [17].

Update Overhead. To assess how consensual updates in
ColChain scale in relation to the size of the community and the
size of the fragments, we ran experiments where we applied up-
dates to 338 randomly chosen fragments (out of the 4004 fragments
in the network) of varying sizes in communities of different sizes.
We measured the update overhead time (UOT), including the time
it takes for nodes within the community to forward acceptance
messages. In this experiment, the updates are performed by a ran-
dom non-owner node, and we assume that the participants in the
community instantly accept the transactions. Figure 7c shows the
update time for different transactions applied to the 338 randomly
chosen fragments. While the number of messages sent between
nodes should rise polynomially with the community size (from 20
for the communities with five participants to 380 for communities
with 20 participants), this has relatively little impact on the over-
head of the updates. In line with the versioning experiments, the
materialization of the updated file represents the biggest overhead.
This highlights the limitations with updates that HDT entails.

7.4 Summary

Our experimental evaluations clearly show that ColChain is able
to not only support consensual updates and query processing over
previous dataset versions, but achieves comparable query process-
ing performance to state-of-the-art decentralized architectures. The
overhead of processing queries over previous dataset versions is
mostly affected by the materialization of the older fragment itself,
and ColChain is able to handle increasing chain lengths relatively
efficiently in comparison. Furthermore, the overhead of consensual
updates to fragments is also mostly affected by the materializa-
tion of the new version rather than the validation protocols. This
highlights that the used RDF encoding has an impact on the per-
formance with regards to versioning and consensual updates, and
that a different encoding that allows for efficient updates could
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be more suitable for ColChain. Overall, our experimental eval-
uation clearly shows that ColChain is able to efficiently handle
consensual updates, provides an approach to processing queries
over previous versions that is scalable in relation to the length
of the chain, and achieves good query processing performance in
comparison to state-of-the-art decentralized architectures.

8 CONCLUSION

In this paper, we presented ColChain (COLlaborative knowledge
CHAINs), a novel decentralized system that allows for users to
provide updates to published knowledge graphs while enabling
querying previous dataset versions. ColChain divides unstruc-
tured Peer-to-Peer networks into smaller communities of nodes
and applies community-based chains of updates to data fragments.
By relying on the consensus of participating nodes in a commu-
nity, ColChain is able to let nodes propose and vote on updates to
the fragments. Furthermore, by structuring changes to fragments
over time as chains, ColChain allows nodes to roll back updates
and obtain query answers over previous dataset versions. Our ex-
perimental evaluation shows that ColChain achieves comparable
performance to state-of-the-art interfaces, while the overhead of
processing queries over previous dataset versions is mostly affected
by the materialization of the older fragment and the used RDF
encoding rather than the validation protocol. As part of our fu-
ture work, we will investigate how to include measures to detect
and avoid malicious activity. Furthermore, we will assess whether
sharing the query processing load between nodes could improve
query processing performance in ColChain and assess alternative
RDF compression techniques to improve efficiency when process-
ing queries over previous versions. We also plan to explore the
possibility of using different consensus protocols that make ac-
tive participation of users more scalable, e.g., by letting fragment
owners specify a qualified majority or detecting malicious updates
automatically. This could be done by expanding the metadata triples
and adding routines for alternative consensus strategies.
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